A Symmetry-Preserving Reduced-Order Observer
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Abstract— A symmetry-preserving, reduced-order state ob-
server is presented for the unmeasured part of a system’s
state, where the nonlinear system dynamics exhibit symmetry
under the action of a Lie group. Leveraging this symmetry
with a moving frame, the observer dynamics are constructed
such that they are invariant under the Lie group’s action.
Sufficient conditions for the observer to be asymptotically stable
are developed by studying the stability of an invariant error
system. As an illustrative example, the observer is applied to the
problem of rigid-body velocity estimation, which demonstrates
how exploiting the symmetry of the system can simplify the
stabilization of the estimation error dynamics.

I. INTRODUCTION

Methods for designing state observers for nonlinear sys-
tems are limited, and there are no general techniques that
guarantee global convergence of the estimation error as there
are in the linear case [1, Ch. 15]. Provably effective state
estimation strategies are inevitably limited to special classes
of systems, motivating considerable attention in the past sev-
eral decades to nonlinear observers. Early results generally
rely either on Lipschitz conditions (e.g., [2], [3], [4]) or
finding a transformation of the system to some canonical
form (e.g., [5], [6], [7]). For some systems, however, these
methods are overly-conservative or difficult to implement.
Passivity-based observers ([8], [9]) constitute an approach
that aims to overcome these deficiencies by viewing observer
design as output feedback control of a state estimation error
system — a perspective inherently shared among nonlinear
observer techniques as a result of the duality between non-
linear controllability and observability [10, Ch. 3].

Approaches to observer design that leverage the structure
of the system are of particular interest. Specifically, the
role of differential geometry in observer design has been
explored, in which symmetries of a nonlinear dynamical
system are preserved in the state observer and its state
estimation error dynamics, aiding in design and stability
analysis. From a Lagrangian perspective, Aghannan and Rou-
chon [11] leveraged the symmetry inherent in the coordinate-
free Euler-Lagrange equations to design a nonlinear observer
given measurements of the system’s configuration. This idea
of leveraging symmetries in the dynamics was generalized
by Bonnabel et al. to include nonlinear systems under a
Lie group’s action [12] as well as systems defined on Lie
groups [13]. The idea of these so-called symmetry-preserving
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observers is to design an observer that is also invariant, i.e.,
for which the observer dynamics also preserve this Lie group
symmetry. This approach allows the observer’s convergence
properties to be analyzed more easily because of simplifi-
cations afforded by the system symmetry. The invariant ex-
tended Kalman filter (EKF) developed in Bonnabel et al. [14]
is a constructive, local symmetry-preserving observer that
is also applicable to systems with measurement and pro-
cess noise. The invariant EKF was shown by Barrau and
Bonnabel in [15] to be a stable observer, admitting an exact
linearization for group affine systems. From a preservative
of equivariance, Mahony et al. [16] developed a nonlinear
observer for kinematic systems with complete symmetry
— that is, systems defined on homogeneous spaces. This
work was generalized with the equivariant Kalman filter,
which applies to general equivariant systems (see van Goor
et al. [17] and references therein).

Existing approaches to symmetry-preserving observers
only consider the full-order case, however, in which the
entire state of the system is estimated. In many scenarios,
part of the system’s state may be known with negligible error
or may be obtained as the output of an observer whose design
is independent of the rest of the system’s state. For example,
attitude observers for aircraft or spacecraft often do not rely
on the rigid body’s translational dynamics (e.g., [18] and
[19]). Another example is the problem of wind estimation
from aircraft motion (e.g., [20], [21]), where the main goal
is to obtain estimates of wind and air-relative velocity — not
to re-estimate the aircraft’s position, attitude, and angular
velocity. Estimating wind can be framed as a disturbance
estimation problem, falling into the general category where
the internal state of the system is known but the disturbance
is not. Disturbance observers generally assume the dynamics
of the disturbance are unknown (e.g., [22], [23]) and can also
be applied to systems defined on Lie groups (e.g., [24], [25]).
However, when the disturbance dynamics are known, they
may be leveraged to obtain improved performance and/or
stronger guarantees.

In scenarios where full-order observers are either unneces-
sary or impractical, reduced-order observers, in the sense of
Karagiannis et al. in [26] and [27], are of particular interest
in which only the unmeasured part of the system’s state is
estimated. The aim of reduced-order observer design is to
render a particular set, characterized by zero state estima-
tion error, positively invariant and globally asymptotically
attractive. However, the definitions of this set and the ob-
server dynamics are non-constructive (although constructive
approaches are available for certain classes of systems [9]).
In this paper, we develop a reduced-order observer that is



also symmetry-preserving. That is, the zero-error set and the
observer dynamics are constructed in a way such that they
are invariant under the Lie group’s action. Leveraging this
symmetry leads to an invariant state estimation error sys-
tem, simplifying observer parameter selection and stability
analysis.

The remainder of this paper is organized as follows.
Section II introduces the preliminary concepts that will be
used in the development of the pre-observer in Section III.
Next, sufficient conditions for the pre-observer to be an
asymptotically stable observer are presented in Section IV.
Finally, the main results are applied to the example of
rigid-body velocity estimation in Section V, followed by
concluding remarks in Section VI.

II. PRELIMINARIES

A. Transformation Groups, the Moving Frame, and Invariant
Dynamics

1) Transformation Groups [28], [29]: Consider a differ-
entiable (i.e., C'°° or smooth) manifold X on which a Lie
group G acts via the mapping

p:GxX =X, (g,x) — p4(z)

such that (i) the identity element e in G induces the identity
transformation @.(x) = « for all z € X, and (ii) the
composition of group actions satisfies @400, = @g«n, Where
“o” denotes the composition of mappings and “x” is group
multiplication. The inverse transformation %—1 is given by
the action of the inverse group element — i.e., <p;1 = Qg-1.
The Lie group G is said to act freely on X if p4(z) = «
implies ¢ is the identity element, e. The collection {¢,}4ca
is called a transformation group. The G-orbit of a point
x € X is the set {¢,(z) | g € G}.

2) The Moving Frame [12], [29], [30]: A moving frame
is a mapping 7 : X — G that has the following equivariance
property (illustrated in Fig. 1):

Y(pg(x)) * g =~(z) ¢))

It may be associated with a coordinate cross-section
K that transversely intersects G-orbits on X'. Informally,
for an r-dimensional Lie group G acting freely on the
n-dimensional manifold X, let cpig“" be the part of ¢, that
maps to an r-dimensional submanifold of X" such that it is
invertible with respect to g in a neighborhood of the identity
element ¢ € (. Then, one can select a constant k in the
image of cpign" that defines the unique point at which the G-
orbit of a generic point x intersects the (n — r)-dimensional
cross-section /C. In other words, the moving frame can be
obtained by solving the normalization equation

on (z) =k

for h € G. The local solution h = y(x) defines the moving
frame.

@:l(\;)(x) =k

/<p/

.
R/

g f‘
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Fig. 1. Equivariance of the moving frame « and its construction via the
cross-section

3) Invariant Dynamics [12], [28]: Consider the dynami-
cal control system

&= f(z,u) 2

where x(t) € X (a differentiable manifold), u(t) € U (a
set), and f(-,u) : X = T,X (a vector field on X for each
u € U). Here, T, X denotes the tangent space to X" at x. Let
{(pg(x),1qg(u))}gec be a transformation group on X x U,
where G is an r-dimensional Lie group. The mapping ¢, :
X — X induces the tangent map Typg : T X = Ty ()X
at z. Note that if X = R", then T, ¢, is simply the Jacobian
matrix, Opg4(x)/Ox. The system (2) is called G-invariant if

Flpg(x),94(u) = Topg (f(x,u))

It follows that the tangent map of g (T) = ¢q(¢n(z))
satisfies

Tz@g*h = Tgah(x)cpg o Tz@h

A function I : X x U — R is called an invariant if
I(pg(x),vg(u)) = I(z,u) for all ¢ € G. Suppose G acts
freely on X. Then, there locally exist n — r functionally
independent invariants (I1(x),...,I_-(z)).

B. Immersion and Invariance Observers [26], [27]

Consider a dynamical system whose state is described by
an unmeasured part, x € X C R", and a measured part,
y € Y C RP, with dynamics

&= f(z,y)
y=h(z,y)
The dynamical system
i=a(zy) 3)

where z € RZ" is called a (global) reduced-order
observer for x if there exists a smooth manifold

zZ= {(x,y,z) | 9(Z>y) = (b(:l?,y)} “)

defined by smooth mappings 6 and ¢ that are left invertible
with respect to their first argument such that Z is positively



invariant and (globally) asymptotically attractive. The esti-
mate of x is then given by

& =¢™(0(z,9).y) ®)

where ¢(I-") denotes the functional left inverse of ¢ with
respect to its first argument; that is, ¢ (¢(z,y),y) = .

III. INVARIANT PRE-OBSERVER

Consider a system whose state is given by an unmeasured
part x € X C R™ and a measured part y € ). Here, ) is
a p-dimensional differentiable manifold and X is an open
subset of R™ that contains the origin. The dynamics of this
system are given by

(6a)
(6b)

z = f(xay7u)
Y= h(m,y,u)

where v € U is the known “input” to the system. It is not
necessarily just composed of control inputs; rather it is a
known signal on which a particular Lie group acts. Here,
the dynamics of the measured part of the state, y, may be
expressed intrinsically, that is, without specifying a local
coordinate chart.

We consider systems of the form (6) that are invariant
under the action of some Lie group G.

Assumption 1: The system (6) is G-invariant under the

transformation group {(¢q(x), 04(y), ¥g(u))}gec, Where G
is an r-dimensional Lie group. That is,

Toog (f(z,y,u)) = f(eg(x), 09(y), Vg (u))
Tyog(h(z,y,u)) = h(eg(x), 04(y), Yg(u))

Furthermore, ¢, (z) is linear in x.

We can now describe what it means for a reduced-order
observer to be symmetry-preserving under the transformation
group considered in Assumption 1. Briefly, a pre-observer is
an observer for which there is not (yet) any claim about
error convergence. We postulate a form for the observer of
the unmeasured part of the state x that preserves invariance
of the state estimate dynamics. Inspired by [12], we propose
the following definition.

Definition 1 (G-invariant reduced-order pre-observer):
The dynamical system

z=a(z,y,u) N

with output
& =z+py) ®

for some smooth map 3 : Y — X is a G-invariant reduced-
order pre-observer if the system

is G-invariant and the manifold
Z={(za,y) €eXx X xV]|z=12—By)}

is positively invariant. A G-invariant pre-observer is a G-
invariant observer if Z is asymptotically attractive.

The prescription of the zero-error manifold Z here is not
quite as general as the case described in [27]. We instead

(10)

consider the condition that defines Z to be linear in z and x
(and for z to be the same dimension as x). In other words,
we choose 6(z,y) = z and ¢(x,y) =  — B(y) in (4). This
simplification reveals an intuitive choice for the observer
map [ in the following lemma based on the underlying
geometry.

Lemma 1: Suppose there exists a moving frame v : ) —
G that only depends on y € ), and let £ : ) — X be a
smooth map. If

B(y) = ¢+ (£erw ) )

then the following commutative identities (illustrated in
Fig. 2) hold for all g € G and y € ):

Bleg(y)) = ¢q(B(y))

Ty, w)B 0 Tyog = Tpyypg 0o Typ

(1)

12)
13)

In other words, 8 commutes with the transformation group.

B|Typ

Fig. 2. Commutative relationship between /3 and the transformation group

Proof: Beginning with the definition of 3, we have

Bles®)) = P10, (L2100, (0 W))) )

By the equivariance property (1) of the moving frame,

B(og()) = #reg-1)1 (L0309 (0(1))) )

Using the composition properties for group elements and
group actions,

Blog(y)) = Pguy-1 (6(97*9‘1*9(3/)))

= Pg (907‘1 (f(g,y(y))))
=¢4(B(y))

Finally, (13) follows directly from the properties of the
tangent map. O



Using Lemma 1, a G-invariant pre-observer is readily
constructed for a system satisfying Assumption 1.

Theorem 1: Suppose Assumption 1 and the conditions of
Lemma 1 hold. Let the vector field a(-,y,u) : X — TX be
defined by

a(z,y,u) = f(z+B(y), v, u)=TyB(h(z+B(y), y,u)) (14)

and let the observer map [ be given by (11). Then, the
dynamical system (7) with output (8) is a G-invariant,
reduced-order pre-observer.

Proof: We begin by showing invariance of the state
estimate dynamics (9). Define

F(&,z,y,u) = a(@ — B(y),y,u) + TyB(h(z,y,u))
Then,

Tspg (F(ﬁ, z,, u)) =Tsp, (f(i, v, u))
— (Tapg 0 TyB) (W&, y, u) — h(z, y,u))
The assumed linearity of ¢, implies T;¢, does not depend
on the choice of base point x. Therefore, Tz, = Tg(y) ¥y,

and Lemma 1 can be used along with the invariance of f to
obtain

Tay (F(&,2,y,u)) = f(pg(2), 09(y), g (u))
- (TQg(y)/B o Ty@g) (h(i’ Y, u) - h(x’ Y, u))

Since h is also G-invariant, we have

Ti‘Pg<F(jvxvyau)) = f(‘Pg(-%% Qg(y),"/)g(u))
- ng(y)ﬂ(h(@g(j), Qg(y)7 d)g(u))
- h(@g(x)? Qg(y>7¢g(u)))

By Lemma 1, we recognize

‘Pg('%) = ‘Pg(z) + 5(99(?4))
Then, it follows that

Tf@gpg (F(‘%’ T, Y, u)) = O‘((pg(j)*ﬂ(gg(y))a Qg(y), 1/’9(“))
+ ng(y)ﬁ h(@g(x% Qg(y>7 %(U)))
Therefore,

Tapg (F(#,2,y,u)) = Fpg(&),0q(x), 04(y), ¥g(u))

That is, the system (9) is G-invariant. Next, we show the
zero error manifold Z given in (10) is positively invariant.
Since z — z + B(y) = 0 on Z, it is sufficient to verify that

OZ(I - ﬂ(y)a Y, U) - f(xa Y, U) + Ty,B(h(l‘, Y, U))
= f(xv Y, U) - Tyﬁ(h(.’b, Y, U))
- f(x7 Y, u) + Tyﬁ(h(.’li, Y, u)) =0

Thus, referring to (7), trajectories originating in Z remain
in Z. It follows that (14)—(8) is a G-invariant reduced-order
pre-observer. O

As an improvement over the general reduced-order ob-
server described in §II-B, Theorem 1 leverages symmetry to
construct a reduced-order pre-observer. The functions 6, ¢,
and « in (3)—(5) are formulated using the moving frame ~.
The equivariance of the moving frame is the key property
that makes this pre-observer G-invariant.

IV. INVARIANT OBSERVER

We now aim to find sufficient conditions for the pre-
observer in Theorem 1 to be a G-invariant reduced-order
observer. That is, we seek conditions under which Z is
asymptotically attractive. Practically, this aim is accom-
plished by choosing the map ¢ : ) — A" such that a stability
claim can be made about the origin of a state estimation error
system. Like [12], we consider nonlinear error coordinates
that are G-invariant. Specifically, let

77(27 €T, y) = (p“/(y)(z) + E(Qw(y) (y)) — Pr(y) (I) (15)

be invariant coordinates that are non-zero if and only if
(z,z,y) ¢ Z. Thus, n — 0 as t — oo implies Z is
asymptotically attractive. Let X = @,y (2), Y = 0,(y)(¥).
and U = 1, )(u). Using the moving frame to define these
transformed points means (X,Y,U) constitutes a complete
set of invariants [29, Ch. 8]. As will be shown shortly, the
stability of the pre-observer (7) depends only 7 and the
invariants X, Y, and Z (see Remark 1).

To derive sufficient conditions for asymptotic stability, we
will make use of the following result.

Lemma 2: Let A\ : )Y — X be the map

A3 6) = @y y)(§)

where £ € X is held constant. Then,
T(yio,—1 AP,y 1))

=T (o, :0) A (29 (), 09 (y), Py (w)))  (16)

forany g € G and ¢ € X.
The following proof of Lemma 2 is illustrated in Fig. 3.

(o), 00(1), 1s(w)) )

Z 1

() (Pg=1(€)) = P00 ) (€)

~

X

Fig. 3. Invariance of A and its tangent map

Proof: First, we recognize )\ is invariant since

Mg (y); 09(2)) = Py, () (0g(2))
= Pr(y)g—1 (Pg(2))
= Pr(y) (@)
= AMy; )



for any = € X, where we again use the equivariance of the
moving frame ~y. Thus,

AY; g-1(C)) = Mg (y); €)

for any ¢ € X. Since A is a composition of maps, it follows
that for any ¢ € &,

Ty, 1A = Tie, w102 © Tyog

Applying this tangent map to the G-invariant vector field h,
we obtain (16). O
Finally, sufficient conditions for (7) to be a G-invariant
reduced-order observer are given as follows.
Theorem 2: Suppose the assumptions of Theorem 1 hold.
The G-invariant pre-observer (7) is a G-invariant observer if
the origin 1 = 0 of the invariant error system

+ T ARX, Y,0)) (7
is asymptotically stable uniformly in X, Y, and U.

Proof: By definition, the pre-observer (7) is an ob-
server if the zero error manifold Z is positively invariant
and asymptotically attractive or, equivalently, if the state
estimation error dynamics have a globally asymptotically
stable equilibrium at the origin. It remains for us to show
that the estimation error dynamics are given by the invariant
error system (17). Since ¢4 (x) is linear in x, we can write

N =Py (2 + BY)) = Ly (@)

Thus, the time derivative of 7 satisfies

i =Ty )97 (a2, ,0) + TyB(h(z,y,0)) )
- Tz@’y (f(:vv Y, 'LL)) + T(y;z+[3(y)—m)>\(h(xa Y, ’LL))

Substituting the definition of o from Theorem 1 and again
using the linearity of ¢4(-), we have

01 =Toys)% ([(z+BW), v w) = Topy (f(z,y,u))
— (Tagypy © TyB) (h(z + By), y, u) — h(z,y, u))
+ T(y;erﬁ(y)fx))‘(h(xy Y, U))
Applying the invariance of f and h through the use of
Lemma 1 yields
~ Ty B(h(es (2 + BW)), Y. U) = h(X. Y, U))
+ T(y;z+ﬁ(y)—w)>‘(h(xa Y, U))

Notice the last term in the above equation can also be written
as

T(y;¢771(y)(n))A(h(x7 Y, u))
Therefore, we can use Lemma 2 along with a substitution of
z=p-1(n) —By) +z
to obtain (17). O

Theorem 2 states sufficient conditions for the reduced-
order pre-observer constructed in Theorem 1 to be an asymp-
totically stable observer. In particular, the error system (17) is
G-invariant, meaning stability can be equivalently analyzed
under arbitrary transformation by the Lie group’s action.

Remark 1: The error system (17) depends only on the
invariant error 7 and the invariants X, Y, and U, which can
be reduced to a set of n+ p —r functionally independent in-
variants, I (z,y,u) [29, Ch. 8]. This observation is consistent
with the full-order case considered in [12, Theorem 3].

V. EXAMPLE: RIGID-BODY VELOCITY
OBSERVER

As an example, consider a rigid aircraft instrumented
with an accelerometer, gyroscope, magnetometer, and GNSS
receiver such that its position, ¢, and attitude rotation matrix,
Rip, are known with negligible error. Furthermore, assume
the angular velocity, w, and body-frame specific force, a,
(obtained from filtered accelerometer readings) are available
as inputs for the observer design. However, suppose that the
body velocity, v = (u,v,w) is not directly measured. The
aim is to design a reduced-order velocity observer for the
system

\%:vxw+RITBg+a

& f(z,y,u)
(1) = (i)
RIB RIBS(O.))
—_—— N—— —
y h(;l:,y,'u,)

where S(-) is the skew-symmetric cross product equivalent
matrix satisfying S(a)b = a x b for 3-vectors a and b and g
is the gravity vector.

Proposition 1: The system (18) is SO(3)-invariant with
respect to the transformation group

o= i (ulg). w00 (3

where R, € G = SO(3).
Proof: We have

Tarpg (f(‘ra Z/vu)) = Ry(v x w) + RgRITBg + Rga
= Rgv X Rgw + (RIBR;—)TQ + Rya
= f(‘pg(x% Qg(y)albg(u))

and

T?!Qg (h(gc,y,u)) = (RIBLR;’I(BU) T)

( R[BR R’U )
RipR] S(Ryw)
h(pg (@), 09y ) Yy (w))

Here, we have used the property that S(R¢) = RS(§)RT
for any R € SO(3) and £ € R3. O

Since Rip is an element of the Lie group G, the moving
frame is simply

v(y) = Rip



Because the transformation group is also linear in the mea-
sured part of the state, we can choose £ to be

t(y) = Lq
where L € R3*3 is a tuning parameter. Therefore,
Bly) = RigLq
Applying Theorem 1, we have
o(z,2,y) = (2 + RigLg) xw + Rigg +a

f(Z+/8(y)ayvu)
+S(w)RigLq — RigLR1s(z + RizLq)

~1,8(h(z+B(y) )
with the estimate of v given by
=2+ RizLq

The sufficient condition given in Theorem 2 reduces to the
requirement that the system

n=—Ln

is asymptotically stable. Therefore, if (—L) is Hurwitz, then
the pre-observer Z = «(z,y,u) is a globally exponentially
stable, reduced-order, SO(3)-invariant observer.

As a numerical demonstration, the aircraft equations of
motion (18) were simulated using the nonlinear aerodynamic
model in Simmons et al. [31] to capture the specific force a.
Large-amplitude inputs to the aircraft’s throttle, aileron, ele-
vator, and rudder were commanded, resulting in maneuvering
flight trajectory shown in Fig. 4. Here, the aircraft starts

m|

— -20

A Altitude
5

-60 4

60
40

20 20
40

A East [m] A North [m]

Fig. 4. Maneuvering aircraft

in northbound, straight-and-level flight at 20 m/s with zero
angle of attack; that is, v(0) = [20 0 0], Rp(0) = I, and
w(0) = 0. For the initial estimate ©(0) = 0 and gain matrix
L = 10L, the time history of velocity estimates is shown in
Fig. 5.

= = = Truth

Body Velocity, v [m/s]

Time, ¢ [s]

Fig. 5. Velocity estimates

To stress the observer, we include noisy measurements of
y and wu. Specifically, suppose

Yg = q + Wy Uy = W + Wy,

Yris = Rip exp(S(wryy)) Ug = G + Wy

where wg, wpg,;, w,, and w, are zero-mean, Gaus-
sian, continuous-time, “white noise” with power ,spec-
tral densities 5 ;<210*4]I rﬁ—;, 10771 é, 10-51 %, and
2 x 10721 %, respectively. Figure 6 shows the velocity
estimates when y and u are corrupted by a realization of
these random processes, assuming a noise sampling rate of
1000 Hz to approximate continuous-time white noise. Note

35 T T T T

30

25

20
15

Body Velocity, v [m/s]

_15 L L L L
0 2 4 6 8 10

Time, ¢ [s]

Fig. 6. Velocity estimates with noisy measurements and inputs

that in this simple example, a nonlinear filter (such as an ex-
tended Kalman filter) produces less noisy estimates; reduced-
order observers have a tendency to amplify measurement
noise. Nonetheless, the results shown in Fig. 6 are indicative
of the observer’s inherent robustness to disturbances, as



expected from the fact that the undisturbed invariant error
system is globally exponentially stable [32, Lemma 5.1].
As explored in [33], this local robustness also ensures that
the disturbance incurred by using sampled measurements of
y yields a bounded result. In practice, “measured” values
for low-rate signals, such as position data from GNSS,
should be propagated between samples using an extended
Kalman predictor, for instance. While proof of stability in
the presence of noise is beyond the scope of this paper, the
reader is directed to [34] for an application-specific treatment
illustrating how process noise might impact performance and
stability analysis.

VI. CONCLUSIONS

A symmetry-preserving, reduced-order observer has been
presented. This approach is beneficial when part of the
system’s state is known with negligible error, avoiding un-
necessary re-estimation of known signals and reducing com-
putational complexity. Furthermore, the observer preserves
symmetry. That is, the state estimate dynamics are invariant
under the action of a Lie group. As a result, the state estimate
error dynamics are also invariant under the group action.
Exploiting these symmetries can simplify the selection of
observer parameters as seen with the example of a rigid-body
velocity observer. Tuning the proposed observer consists of
finding a smooth map ¢ such that the origin of the invariant
error system is asymptotically stable. For some systems, this
problem is reduced to choosing a gain matrix, L, as shown
in the example. By leveraging the geometry of the problem,
the proposed observer simplifies both the design process and
stability analysis, providing a powerful tool for safety-critical
nonlinear systems.
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