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This paper presents the development and simulation of a robust, periodic linear control
law to direct a fixed-wing unmanned aircraft in a stall spin along a desired path. As a flight
termination sequence, a spin dissipates energy in a stable, controlled manner. Because control
deflections are required to initiate and maintain such a spin, it may be possible, and desirable,
to guide the aircraft toward a specific impact location by tilting the, otherwise vertical, axis
of the spinning descent. Through augmentation of the dynamics with a measure of velocity
vector direction error and the exploitation of a steady spin rate, a yaw-periodic linear quadratic
regulator is designed to direct the spin. Then, a robust 𝐻∞ controller is designed for a reduced
set of aircraft states and implemented in parallel to robustly maintain the spin in the presence of
exogenous disturbances and modeling errors. The combination of the two controllers is shown
through simulation of the nonlinear closed-loop system to robustly follow a desired path in the
presence of modeling errors and external disturbances.

I. Introduction
It is often required that a fixed-wing unmanned aircraft, such as the RQ-4 Global Hawk, be equipped with an

emergency flight termination sequence in the case of a malfunction, such as loss of propulsion or communication [1].
One common flight termination approach is to put the aircraft in a stall spin - a steady descent toward a small and
predictable impact location and with a relatively low impact speed as compared to a gliding or spiral descent. Such a
termination approach has been used on NASA’s Airborne Subscale Transport Aircraft Research (AirSTAR) platform for
beyond visual line-of-sight research [2], and is a requirement in the AIAA Student Design, Build, Fly Competition [3].
The main advantage of a spin is that it dissipates energy in a stable, predictable, and controlled manner and thus is an
effective failsafe [4].
Still, it is desirable to have the ability to control and direct this spinning descent along a prescribed path to impact in

a safe crash zone, as suggested in [5]. This paper presents the development and simulation of a robust, linear control law
to direct the spinning descent of an aircraft along a periodic inertial path with a desired average azimuth and inclination
angle. The aircraft is controlled by two feedback control laws running in parallel, each with a specialized objective.
First, an infinite-horizon yaw-periodic linear quadratic (LQ) controller computes the optimal input that minimizes a

multi-objective cost of cumulative velocity vector error and input/state perturbation from a steady vertical spin. Working
in isolation, this controller is effective at controlling the fast yaw dynamics where slowly-parameter-varying assumptions
fail. However, this control law tends to command inputs beyond the physical limits of the system when exposed to
external disturbances and modeling errors.
Second, a robust 𝐻∞ controller places an upper bound on the worst-case map from exogenous forces, moments, and

angular deflections of control surfaces (the LQ controller) to the aircraft’s “distance" from the nominal spin (or rather a
frequency-dependent weighting of this). The model is assumed to have time-invariant uncertainty in the aerodynamic
parameters, representing very real uncertainty and unpredictability of spin aerodynamics [6]. D-K iteration is used to
synthesize the robust 𝐻∞ controller, yielding a dynamic output-feedback control law.
The driving factor in this architecture is the need for good tracking while also robustly maintaining a spin. Too

much weight on tracking tends to drive the aircraft out of a spin into an unstable dive, while too much weight on
perturbation from the vertical spin results in poor tracking of larger desired inclination angles. This paper uses the
flight-derived nominal glide model developed in [7] and nominal spin states and control inputs determined from flight
data. The developed control law is simulated and shown to have superior performance to a linear quadratic controller
alone. Future efforts include flight testing of the control law developed in this paper.
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II. Aircraft Dynamic Model

Fig. 1 E-Flite Carbon-Z Cessna 150.

The aircraft used in the design and simulation of
this controller is an E-Flite Carbon-Z Cessna 150 radio-
controlled (RC) aircraft, instrumented as described in [7]
and [8], as shown in Fig. 1. The aircraft is modeled as a
rigid body of mass𝑚 with three control surfaces (ailerons,
elevators, rudder). It is assumed that the throttle is set
to zero during the flight termination maneuver. Let unit
vectors {i1, i2, i3} define an earth-fixed North-East-Down
(NED) orthonormal reference frame, FI. Let the unit
vectors {b1, b2, b3} define the orthonormal body-fixed
frame, FB, centered at the aircraft center of mass with b1
pointing along the longitudinal axis out the nose of the
aircraft, b2 out the right wing, and b3 out the bottom. The position of the body frame with respect to the inertial frame
is given by the vector r = [𝑥 𝑦 𝑧]⊤. The attitude of the aircraft is given by the rotation matrix, RIB, that maps vector
components in FB to FI. This is described by the 1-2-3 rotation

RIB = 𝑒ê3𝜓𝑒ê2 𝜃𝑒ê1𝜙

parameterized by roll (𝜙), pitch (𝜃), and yaw (𝜓) angles, where e1 = [1 0 0]⊤, etc., and ·̂ is the skew-symmetric cross
product equivalent matrix satisfying âb = a × b. Let v = [𝑢 𝑣 𝑤]⊤ and 𝝎 = [𝑝 𝑞 𝑟]⊤ be the translational and rotational
velocity of the aircraft with respect to FI expressed in FB, respectively. With this choice of Euler angles, we have the
kinematic equations of motion

¤r = RIBv (1a)
¤RIB = RIB𝝎̂ (1b)

With 𝚯 := [𝜙 𝜃 𝜓]⊤, Eq. (1b) becomes

¤𝚯 = LIB𝝎 =


1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙
0 sin 𝜙 sec 𝜃 cos 𝜙 sec 𝜃



𝑝

𝑞

𝑟

 (2)

Let us represent the aerodynamic forces and moments on the aircraft expressed in FB as Faero = [𝑋 𝑌 𝑍]⊤ and
Maero = [L M N ]⊤. Define p = 𝑚v to be the linear momentum of the aircraft and h = I𝝎 to be the angular
momentum vector about the center of mass, both expressed in FB. Here, I is the moment of inertia matrix about the
center of mass in FB. Thus, we have the dynamic equations of motion

¤p = p × 𝝎 + 𝑚𝑔RBIe3 + Faero

¤h = h × 𝝎 + Maero
(3)

Requiring a high-fidelity spin aerodynamic model in order to design the proposed model-based flight termination
strategy would be unrealistic for most aircraft. For this reason, a nonlinear aerodynamic model is used which was
validated for perturbations from nominal, wings-level, gliding flight. The details of which are found in [7]. The
body-frame forces and moments are functions of airspeed, 𝑉 = ∥v∥, angle-of-attack, 𝛼, angle-of-sideslip, 𝛽, and body
angular velocity, 𝝎. Here, 𝛼 and 𝛽 are defined by the transformation from the wind frame, FW, to the body frame, given
by

RBW = 𝑒−ê2𝛼𝑒ê3𝛽

For control surface deflections 𝜹 = [𝛿𝑎 𝛿𝑒 𝛿𝑟 ]⊤, the nonlinear aerodynamic model is a function of the aircraft states and
inputs in the form

Faero = Faero (𝑉, 𝛼, 𝛽,𝝎, 𝜹)
Maero = Maero (𝑉, 𝛼, 𝛽,𝝎, 𝜹)
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A nominal stall spin is steady in yaw angle (ignoring position), so we define the reduced state vector, x𝑟 , to be the
states that are constant in a spin, i.e. roll and pitch angle, body velocity (or wind-frame), and body angular velocity. We
desire the nominal spin to be a steep stall spin with aileron, elevator, and rudder at about 75% maximum deflection.
These two requirements correspond to control surface deflections that are not too close to the saturation limits, but also
result in a relatively low angle-of-attack to maintain aerodynamic control authority. With an aerodynamic model, the
nominal spin can readily be found using the model-based methods detailed in [9] and [10].
However, for the aircraft presented here, nominal spin flight data were collected in conjunction with the aerodynamic

system identification flight tests discussed in [7]. Steady nominal spin state and control input values determined from
flight data are

𝜙 = −24.01 deg
𝜃 = −73.96 deg

𝑉̃ = 20.40 m/s
𝛼̃ = 12.38 deg
𝛽 = 5.74 deg

𝑝 = −384.5 deg/s
𝑞 = 36.23 deg/s
𝑟 = −97.17 deg/s

𝛿𝑎 = 15.5 deg
𝛿𝑒 = −18.5 deg
𝛿𝑟 = 24.6 deg

(4)

where ·̃ denotes the nominal quantity. Note that the nominal values given in Eq. (4) do not correspond precisely to an
equilibrium of the reduced system, but will be very close. The consequences of this observation are further discussed at
the end of Section III.C.
For the nominal spin chosen, yaw angle takes the form

𝜓̃(𝑡) = 𝜓0 + Ω̃𝑡 (5)

where from Eq. (2), we have the nominal spin rate

Ω̃ := ¤̃𝜓 = 𝑞 sin 𝜙 sec 𝜃 + 𝑟 cos 𝜙 sec 𝜃 ≈ −399
deg

s

The vertical descent rate is steady with

¤̃𝑧 = −𝑢̃ sin 𝜃 + 𝑣̃ sin 𝜙 cos 𝜃 + 𝑤̃ cos 𝜙 cos 𝜃 ≈ 19.6
m
s

The lateral displacement is obtained from

¤𝑥 = −𝐶1 sin𝜓 + 𝐶2 cos𝜓
¤𝑦 = 𝐶2 sin𝜓 + 𝐶1 cos𝜓

where 𝐶1 and 𝐶2 are constant for the nominal spin, taken from Eq. (1a). Thus for the nominal motion, we have

𝑥(𝑡) = 𝑥0 +
1
Ω̃

(𝐶1 (cos𝜓 − cos𝜓0) + 𝐶2 (sin𝜓 − sin𝜓0))

𝑦̃(𝑡) = 𝑦0 +
1
Ω̃

(−𝐶2 (cos𝜓 − cos𝜓0) + 𝐶1 (sin𝜓 − sin𝜓0))
(6)

where 𝑥0, 𝑦0, and 𝜓0 are the initial conditions of 𝑥, 𝑦, and 𝜓, respectively.

III. Controller Design

A. Approach
We choose to define the desired path to be a constant unit vector, defined from the initiation of the spin, pointing in

some desired direction. The aim is to slant the centerline of this helical descent to converge on the specified line. This
desired path is minimally represented by an azimuth angle, 𝜑𝑑 , and inclination angle, 𝜗𝑑 . As a vector in the inertial
frame, FI, this direction is denoted 𝝈𝑑 . The goal of the controller is to make the the perpendicular distance between the
aircraft center of mass and the desired path small, while ensuring the aircraft state variable values remain sufficiently
close to values that correspond to the the nominal spin.
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Remark 1 Some major challenges are
(i) An accurate aerodynamic model for a spin is generally not readily known.
(ii) Control surface deflections are easily saturated in a spin.
(iii) For a skewed helical spin about the desired path, the cross-track error is not identically zero.
(iv) Yaw angle has fast dynamics that are non-trivial to control with a linear approach. For a control law designed

based on a time-varying linearization, yaw angle will drift during perturbations from the nominal state so
that the small perturbation model becomes inaccurate over time.

𝐺

Δ

K∞

K(𝜓)

d
z

yuLQ
u

Fig. 2 Parallel control architecture.

The dynamics are augmented with the integral of the error be-
tween the desired and actual velocity vector directions to address
(iii). Through an independent variable change, a yaw-periodic linear
quadratic (LQ) regulator is designed to address (iv). Then, a station-
ary 𝐻∞ controller is designed for the reduced dynamics to address
(i) and (ii). For these reasons, we choose the control architecture
shown in Figure 2, where Δ is an operator that belongs to a chosen
uncertainty set 𝚫, 𝐺 is the performance-based system, K∞ is the
dynamic 𝐻∞ controller, K(𝜓) is the yaw-periodic LQ state feedback
gain, y are the measurements, z are the performance outputs which we
want to make small, and d are the exogenous force and moment distur-
bances to the system. Note we now denote 𝛿(·) to be the perturbation
from ·̃ for the linearization about the nominal spin.

B. Yaw-Periodic Linear Quadratic Regulator
To address the periodic nature of the cross-track error dynamics, we choose to augment the system with a state that

represents the integral error between the desired and actual velocity vector directions. The velocity vector direction
expressed in FI is

𝝈𝑖 = RIWe1

where RIW = RIBRBW. Because the desired path is a line, the perpendicular cross-track error can be defined by the
projection of the position vector onto 𝝈𝑑 by

e⊥ =
(
r⊤𝝈𝑑

)
𝝈𝑑 − r

as shown in Figure 3. We then define the corrected velocity vector direction, 𝝈𝑐, to be the unit vector that points from
the aircraft to a point on the desired path some look-ahead distance, 𝑘 , ahead of perpendicular. This is illustrated in
Figure 3 and expressed as

𝝈𝑐 =
e⊥ + 𝑘𝝈𝑑
∥e⊥ + 𝑘𝝈𝑑 ∥

The correction of the velocity vector direction is introduced to ensure the spin axis of the convergent trajectory is on the
path as opposed to parallel to it. Then, defining e𝑣 to be the integral error between the desired and actual velocity vector
directions, we have

¤e𝑣 = 𝝈𝑖 − 𝝈𝑐 (7)

We now write the augmented equations of motion from Eqs. (2), (3), and (7) as

¤𝚯 = LIB𝝎 (8a)

¤v = v × 𝝎 + 𝑔RBIe3 +
1
𝑚

Faero (8b)

¤𝝎 = I−1 (I𝝎 × 𝝎 + Maero) (8c)
¤e𝑣 = 𝝈𝑖 − 𝝈𝑐 (8d)

Linearizing these dynamics about the nominal spinning motion gives a 𝑇-periodic linear state equation, where
𝑇 = |360/Ω̃| ≈ 0.9 s. Since 𝜓 is the “fast” variable in this motion, the true yaw angle can quickly become out of phase
with the nominal yaw angle for perturbations from 𝜓̃(𝑡). This results in poor azimuth tracking by a T-periodic controller.
We consider the dynamics in Eq. (8) where the position r, appearing only in 𝝈𝑐, is assumed nominal as a function
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Fig. 3 Cross-track error, e⊥, and corrected desired velocity vector direction, 𝝈𝑐.

of yaw angle, r̃(𝜓). Note that Eqs. (8a), (8b), and (8c) are time-invariant and 𝜓̃(𝑡) is the only time-varying nominal
state variable that explicitly appears in the dynamics. Because 𝜓(𝑡) increases monotonically in time during a spinning
descent, we may consider 𝜓 to be the independent variable for the system

x′(𝜓) = 1
Ω̃

[
f𝑥,𝑟 (x𝑟 , uLQ)

f𝑒,𝑣 (r̃(𝜓), x𝑟 , 𝜓)

]
(9)

where x := [x⊤𝑟 e⊤𝑣 ]⊤ and (·) ′ =
d( ·)
d𝜓 . When 𝜓 = 𝜓̃(𝑡) = Ω̃𝑡, this system produces trajectories in 𝜓 that are a linear

transformation away (Eq. (5)) from those of the original system in time. From Eq. (9), we have the 2𝜋-periodic
linearization in 𝜓,

𝛿x′(𝜓) = A𝑎 (𝜓)𝛿x(𝜓) + B𝑎𝛿uLQ (𝜓) (10)

where 𝛿 denotes a perturbation from the nominal value. Eq. 10 is the linear state equation for which the yaw-varying LQ
controller is designed. The linear-quadratic regulator problem is to determine the control, uLQ, that minimizes

𝐽 = lim
𝜓 𝑓→∞

∫ 𝜓 𝑓

0

(
𝛿u⊤

LQ (𝜓)R𝛿uLQ (𝜓) + 𝛿x⊤ (𝜓)Q𝛿x(𝜓)
)

d𝜓

subject to Eq. (10) and initial condition 𝛿x(0) = 𝛿x0 where we choose

Q =

[
diag(𝛿x𝑟 ,max)−1 0

0 𝜈 I3

]
R = 𝜌 diag(𝛿umax)−1

with I𝑛 representing the 𝑛 × 𝑛 identity matrix. Here 𝛿(·)max represents soft perturbation limits by which Q and R
are normalized. Here 𝜈 and 𝜌 are positive weightings that determine the balance of the 3 objectives: reduced state
perturbation, input perturbation, and cross-track error. Let P(𝜓, 𝜓 𝑓 ) be the solution of the differential Riccati equation,
−¤P = A⊤

𝑎P + PA𝑎 − PB𝑎R−1B⊤
𝑎P + Q, with P(𝜓 𝑓 ) = 0. Since A𝑎 (𝜓) is bounded and continuous and the pair (A𝑎,B𝑎)

is controllable, P(𝜓, 𝜓 𝑓 ) converges to some bounded, positive semi-definite P(𝜓) as 𝜓 𝑓 → ∞ [11]. Then the solution
to the LQ control design problem is

𝛿uLQ (𝜓) = −R−1B⊤
𝑎 P̄(𝜓)𝛿x(𝜓) = −K(𝜓)𝛿x(𝜓) (11)

Values for the three control parameters, 𝜈, 𝜌, and 𝑘 , are chosen through simulation of the LQ controller alone
(without disturbances and model perturbations) such that inputs are not saturated and there is a good balance between
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reduced state perturbation from the nominal spin and cross-track error. This controller tuning is done iteratively while
increasing the desired inclination angle until the LQ controller is no longer capable of achieving the desired motion.
From these results, we choose 𝜈 = 1, 𝜌 = 1, and 𝑘 = 150 m and find the maximum inclination angle is approximately
𝜗max = 25◦. The numerically approximated steady-state solution of the Riccati equation yields a feedback gain, K(𝜓),
where each term is either constant or sinusoidal in 𝜓 with a period of 2𝜋.

C. Robust 𝐻∞ Controller
An 𝐻∞ controller is now designed for the reduced state dynamics. Since the aerodynamics are uncertain, the control

law is designed to be robust to the uncertainty of aerodynamic model parameters. We assume the uncertainty acts on the
plant, 𝐺, as a linear bounded operator, Δ, in a way that represents time-invariant uncertainty in the 37 aerodynamic
parameters found in the nominal glide model in [7]. We assume three inputs affect the system: inputs commanded by
the LQ controller, uLQ, force and moment disturbances, d, and the remaining control inputs to be assigned according to
the 𝐻∞ control law, u. The force and moment disturbances are assumed to be finite-time square-integrable (d ∈ 𝐿2,𝑒)
and the commanded inputs from the LQ controller, uLQ, is an exogenous, measurable signal. This gives the linear state
equation

𝑃 : 𝛿 ¤x𝑟 = A𝑟𝛿x𝑟 + B𝑟 (𝛿uLQ + 𝛿u) + B𝑑d

with measurements y =

[
𝛿x⊤𝑟 𝛿u⊤

LQ

]⊤
. For now, consider the nominal system, where the uncertainty operator, Δ, is

ignored. We define the scaled exogenous disturbances, w, and performance outputs, z, respectively, in the frequency
domain as

w(𝑠) =
[
W𝑑 (𝑠) 0

0 WLQ (𝑠)

] [
d(𝑠)

𝛿uLQ (𝑠)

]
z(𝑠) =

[
W𝑥 (𝑠) 0

0 W𝑢 (𝑠)

] [
𝛿x𝑟 (𝑠)
𝛿u(𝑠)

]
whereW𝑑 ,WLQ,W𝑥 , andW𝑢 are frequency-dependent scalings based on maximum allowable/expected values of the
corresponding variables. Adopting standard notation, this system is now expressed as

𝐺 (𝑠) =
[
𝐺11 𝐺12

𝐺21 𝐺22

]
:=


A𝑟 [B𝑑 B𝑟 ] B𝑟
C𝑧 0 D𝑧𝑢
C𝑦 D𝑦𝑤 0

 :=

[
C𝑧
C𝑦

]
(𝑠I − A𝑟 )−1

[
B𝑤 B𝑟

]
+
[

0 D𝑧𝑢
D𝑦𝑤 0

]
For the control law synthesis and simulation results in this paper, the maximum allowable reduced state perturbation

and maximum expected forces and moments are taken from spin system identification maneuvers. Flight data collection
in [7] includes maneuvers during which the nominal spin is intentionally perturbed by additional inputs, with the aim of
identifying aerodynamic model parameters in the spin regime, but without causing the aircraft to recover from the spin.
LetW𝑑 ,W𝑢, andWLQ be constant scalings, whereWLQ = W−1

𝑢 , andW𝑥 is a weighted 10 Hz first-order low-pass
filter. The disturbance weightings, W𝑑 and WLQ, and the maximum reduced state perturbation, 𝛿x𝑟 ,max, are all
determined independently from the same trajectory with control surface deflections which we denote 𝜹excite. As a
consequence, trajectories under maximum expected force and moment disturbances in addition to control inputs 𝜹excite
result in reduced state perturbations, 𝛿x𝑟 , nearly double the designed maximum, 𝛿x𝑟 ,max. Therefore,W𝑑 andWLQ
are scaled by a weighting factor, 𝜆 ∈ (0, 1), which represents the weighting of force/moment disturbance rejection
relative to the LQ controller attenuation. This weighting, as shown in Figure 4, gives a realistic performance criterion
which we want robustly satisfied. As 𝜆 approaches 0, the 𝐻∞ controller only minimizes the effect LQ inputs have on z.
Conversely, as 𝜆 approaches 1, the 𝐻∞ controller minimizes only the effect of disturbances on z. For simulation, we
choose a disturbance weighting of 𝜆 = 0.5 to equally weight force/moment rejection and LQ controller attenuation.
Let 𝑀 = 𝑆(𝐺, 𝐾) be the closed-loop, transfer function from w to z, including the effects of the uncertainty

operator, Δ. This is described by the lower linear fractional transformation 𝑆(𝐺, 𝐾) = 𝐺11 + 𝐺12𝐾 (𝐼 − 𝐺22𝐾)−1 𝐺21.
Assuming 𝑀 has the structure

𝑀 =

[
𝑀11 𝑀12

𝑀21 𝑀22

]
with inputs/outputs of 𝑀 being the outputs/inputs of Δ, the inclusion of the uncertainty operator is described by the
upper linear fractional transformation 𝑆(𝑀,Δ) = 𝑀22 +𝑀21Δ (𝐼 − 𝑀11Δ)−1 𝑀12, where 𝑀22 is the nominal closed-loop
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Fig. 4 𝐻∞ weighted block diagram.

system from w ↦→ z. For internally stable 𝛿 ¤x𝑟 ,cl = 𝑀22𝛿x𝑟 ,cl, where 𝛿x𝑟 ,cl is the closed-loop reduced state perturbation,
the uncertain system 𝑀 is robustly stable when (𝐼 − 𝑀11Δ)−1 exists for all Δ ∈ 𝚫 [12].
When there is no uncertainty, the 𝐻∞ problem is to find a controller, 𝐾, that minimizes the upper bound on the

worst-case map from w to z. Specifically, we want the induced 𝐿2 norm of the closed loop system to satisfy

∥𝐺cl∥∞ = ∥𝐺cl∥𝐿2→𝐿2 = ess sup
𝜔∈R

𝜎(𝐺̂cl ( 𝑗𝜔)) < 𝛾 ≤ 1 (12)

where 𝐺̂cl ( 𝑗𝜔) is the frequency domain description of 𝐺cl and 𝜎(·) is the largest singular value. Let K be the set of
stabilizing controllers. The problem is to find

arg inf
𝐾 ∈K

∥𝑆(𝐺, 𝐾)∥∞ < 𝛾 (13)

where 𝛾 is the 𝐻∞ performance measure. A value of 𝛾 less than 1 indicates the closed-loop performance is contractive
and our desired criterion is met.
Regarding model uncertainty, we assume the aerodynamic parameters take on values within the 95% confidence

intervals, determined from the model identification process in [7]. We choose the time-invariant uncertainty set

𝚫 :=
{
diag(Δ1, · · · ,Δ𝑝) | Δ𝑖 ∈ L𝑐

TI (𝐿2), ∥Δ𝑖 ∥∞ < 1
}

where L𝑐
TI (𝐿2) is the set of causal, time-invariant, linear bounded operators on the space of square-integrable functions,

𝐿2. LetD be the set of time-invariant non-zero scalings that commute with the uncertainty set, 𝚫, as shown in [12] to be

D =
{
𝐷 ∈ L𝑐

TI (𝐿2) | 𝐷 non-singular, 𝐷̂ (𝑠) = diag(𝐷̂1 (𝑠)I, · · · , 𝐷̂𝑑 (𝑠)I)
}

where each 𝐷̂𝑖 (𝑠) ∈ RH∞ (the space of proper transfer functions with no poles in the closed right-half of the complex
plane). With the chosen structured uncertainty, analysis and synthesis of the controller is readily conducted using the
structured singular value, 𝜇. For the uncertain system, 𝑀 , and the given uncertainty set, 𝚫, the structured singular value,
𝜇, satisfies

𝜇(𝑀11,𝚫) =
1

inf {∥Δ∥∞ | Δ ∈ 𝚫, (𝐼 − 𝑀11Δ) singular}
≤ inf
𝐷∈D

∥𝐷̂𝑀̂11𝐷̂
−1∥∞

as shown in [13]. The robustly stable system has robust performance if 𝜇(𝑀11,𝚫) < 1, meaning the performance
measure remains contractive for all structured uncertainty within the bounds determined in the modeling process. Thus,
the problem is to find

arg inf
𝐾 ∈K , 𝐷∈D

∥𝐷̂𝑀̂11𝐷̂
−1∥∞ ≤ 𝜇 (14)

This is in general a non-convex problem, so we use D-K iteration to find a local minimum using the Matlab® Robust
Control Toolbox [14] [15]. This computation yields an upper bound on the structured singular value of 𝜇 = 0.9066.
Thus, the 𝐻∞ norm of the closed-loop linear system remains below 𝜇 for all normalized structured uncertainty of
1/𝜇. The uncontrolled and closed loop singular value plots for a variety of uncertain parameter values are shown in
Figures 5a and 5b.
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Fig. 5 Singular value comparison.

Proposition 1 The closed-loop, reduced linear system, given by the control formulations in Eqs. (11) and (14) and the
connection in Figure 2, is robustly stable.

Proof. By the 𝜇-synthesis result of 𝜇 < 1, the closed loop reduced system is robustly stable. This holds true for
exogenous signals w in extended 𝐿2 space, 𝐿2,𝑒 [0, 𝑡1], which satisfy∫ 𝑡1

0
∥w(𝑡)∥2

2 d𝑡 < ∞

for all finite 𝑡1 ≥ 0. The disturbance d is assumed in 𝐿2,𝑒, and signal uLQ is generated by the linear, bounded state
feedback gain, K(𝜓), and thus, is also in 𝐿2,𝑒. Therefore, the closed loop linear system is robustly stable. □
As for the closed-loop model of the nonlinear system, the point about which the reduced system is linearized is

not an equilibrium. Therefore, an internally stabilizing linear controller results in closed loop trajectories for which
the time-derivative of the states is non-zero. For the nominal spinning motion (which corresponds to the origin of the
linear system), this is effectively equivalent to a bounded exogenous disturbance, which is robustly rejected by the
𝐻∞ controller. While the region of attraction for the nonlinear closed-loop system is unknown, the robustness and
performance is evaluated through simulation.

IV. Simulation and Results
The nonlinear closed loop dynamics are simulated, incorporating control deflection bounds, wind disturbances,

and perturbations from the nominal glide aerodynamic model in [7]. We illustrate the performance of this control law
through the following scenario. Suppose the Carbon-Z Cessna 150 initiates a spinning flight termination sequence with
the spin fully developed at 1000 ft above ground level. There is constant 15 knot wind from the West. Through some
algorithm, it is determined the best safe crash zone is 350 ft due Northeast, corresponding to approximately a 20.5◦
desired inclination angle. To demonstrate robustness, the aerodynamic parameters are arbitrarily taken as the value
halfway between their estimate and upper 95% confidence interval. These parameter values are used in simulation,
while the control law is synthesized using the modeled parameter estimates.
Consider the closed-loop response under the yaw-periodic LQ controller, as shown in Figure 6a, where the desired

path is shown as the solid black line. The aircraft begins to track the desired path, but then exits the spin. The LQ
controller cannot reject the wind disturbance and model perturbations, failing to keep the aircraft in the spin. To combat

8



the lack of robustness and tendency to exit the spin, we now add the 𝐻∞ controller in parallel. The closed-loop parallel
response is shown in Figure 6b, displaying good tracking of the desired path while maintaining a spin. This scenario
demonstrates the benefit of the parallel control architecture. The norm of the reduced state perturbation for each case, as
well as constant spin inputs, is shown in Figure 7. Both the LQ and 𝐻∞ controllers penalize perturbations from the
nominal spin, but the addition of the 𝐻∞ control law adds robustness and a performance-based result to satisfy this
requirement.
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Fig. 6 LQ vs. parallel controller simulated with wind and model perturbations.
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Fig. 7 Reduced state perturbation.

9



V. Conclusions and Future Work
The development and simulation of a robust, linear control law to direct the spinning descent of an aircraft along a

desired azimuth and inclination angle is presented. This control law, implemented as a fixed-wing UAS flight termination
sequence, can direct the aircraft towards a safe crash zone in a controlled manner with a small crash radius, thereby
reducing the likelihood and severity of a collision with persons or property on the ground.
The proposed linear control law combines the advantages of a state-varying linear quadratic regulator and a

time-invariant robust 𝐻∞ controller in a parallel implementation. The result is a control law that robustly maintains
a spinning descent, while also directing the aircraft’s path along a desired direction. In simulations of the nonlinear
dynamics, the control law shows good disturbance rejection as well as robustness to changes in the aerodynamic model.
This is especially important as the aerodynamics in a spin are not captured well by a nominal glide flight model [7].
One drawback of the presented control law is the inclusion of only soft constraints on input saturation. Similarly,

dynamic constraints on the aircraft states that would precisely keep the aircraft in a spin are not identified - only
weightings taken from flight data. Ongoing efforts include the validation of the nominal glide derived controller with an
accurate nonlinear spin model, as well as a flight test program using both nominal glide and spin aerodynamic models.
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