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Large domain, accurate flight dynamic models with well-characterized uncertainty are often
required for estimation and control of unmanned air vehicles. For unstable aircraft, identifying
these models is a challenging task. Stabilizing controllers tend to suppress important dynamics,
amplify artificial dynamics, and introduce correlation. For large domain model identification
requiring large-amplitude excitation, there is often no stability guarantee, greatly increasing
risk. To develop a model that covers the desired flight envelope, a two-phase data collection
approach is taken where using a simple baseline controller, a set of linear, time-invariant models
are identified about flight conditions that define the vertices of an uncertain polytopic linear
parameter-varying (LPV) system. A robust LPV control law is then synthesized to stabilize
the system with an H∞ norm bound guarantee, allowing for excitation over a large domain
for nonlinear system identification. This modeling approach is applied to a small quadrotor
aircraft whose motion is robustly stabilized about a slowly varying reference velocity, which
serves as the LPV scheduling parameter. The performance objective is chosen to allow sufficient
excitation for nonlinear system identification while maintaining robust stability, thus allowing
for higher-amplitude excitation signals to safely and effectively excite the aircraft dynamics over
a large domain. The control law is demonstrated by simulating the LPV model identified from
flight data.

I. Introduction

In many unmanned aircraft system (UAS) applications, large domain, accurate flight dynamic models are required for
estimation and control. However, obtaining a finite-dimensional model that is valid across the entire flight envelope is

a non-trivial task. For fixed-wing aircraft, the use of orthogonal phase-optimized multisine excitation signals (multisines
for short) and multivariate orthogonal function (MOF) modeling have been successfully used to obtain global flight data
and model structures, respectively [1, 2]. Note that in this paper, the term global refers to the feasible flight envelope as
opposed to the full, mathematical state space. The use of multisines and MOF modeling works very well for statically
stable aircraft that can be excited in an open-loop manner, i.e., without feedback stabilization. For unstable aircraft
such as multirotor air vehicles, on the other hand, a nominal trajectory must be stabilized before actuator excitation can
be applied. Therefore, an iterative approach is generally taken where each iteration involves data collection, model
identification, control law design, and robustness analysis [3]. Part of the difficulty in this process stems from the
fact that a stabilizing control law tends to introduce correlation, suppress dynamics of interest, and amplify artificial
dynamics [4, Ch. 9]. More importantly, it is possible that input excitation signals used for model identification may
drive the system outside the region of attraction of the locally stable reference motion. Here, we propose a methodology
for obtaining uncorrelated large-domain excitation data while guaranteeing stability.

Identification of unstable aircraft can be done using either open-loop or closed-loop flight data. The former approach
is only feasible, however, over time horizons that are short relative to the growth of the fastest unstable mode. This means
global excitation data cannot be obtained in a continuous experiment. Having continuous, large-domain experimental
data simplifies data collection and supports time-domain model identification methods such as output-error, filter-error,
and Kalman filtering methods [4, 5]. To alleviate the practical issues associated with open-loop excitation, experimental
data for unstable aircraft is typically obtained under stabilizing closed-loop control. Since we are interested in flight
dynamic models for control and estimation purposes, we desire an open-loop model from closed-loop flight data. This
is often done for linear model identification of multirotor aircraft [6]. However, in applications where the model must
be applicable over a large domain (see [7], for instance), a nonlinear model must be identified. In this paper, we
aim to concurrently design a controller and an excitation signal that allow for larger amplitude excitation suitable for
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identifying large-domain nonlinear models. Larger excitations provide better signal-to-noise ratio (SNR), which is
especially important in identifying flight dynamic models for small UAS [8]. Allowing for larger excitation is especially
important for multirotor aircraft because they experience considerable vibration which tends to diminish the SNR. These
observations further motivate the need to develop safe methods of performing large-amplitude identification maneuvers
for unstable UAS.

This paper presents a methodology for obtaining global flight data for nonlinear model identification of unstable
UAS. While we focus on the multirotor, the methods apply to unstable fixed-wing configurations as well as vertical
takeoff and landing (VTOL) aircraft, including hybrid aircraft that transition between rotor-borne and wing-borne
flight regimes. The approach we present involves two data collection phases of the system identification process as
opposed to the traditional approach of incremental flight envelope expansions. First, linear time invariant (LTI) models
are identified about a set of specific flight conditions, which are determined using a hypothesized model structure for
the aerodynamic forces and moments. The identified models define a polytopic uncertain linear parameter-varying
(LPV) system. Next, input excitation signals and a reference trajectory are concurrently designed along with a robust
LPV control law that places a sub-optimal H∞ norm bound on the map from input excitation to perturbation from
the reference. Finally, this control law is used in the second phase of data collection in which the UAS is capable of
fully-automated flights that span the desired flight domain in an efficient and safe manner for obtaining informative,
uncorrelated data for nonlinear model identification.

The paper is organized as follows. Section II introduces the small quadrotor aircraft used to demonstrate the
proposed modeling approach and covers the nonlinear rigid-body aircraft dynamics and how they are used to inform the
LPV model derived in Section III. The initial model identification process is detailed in Section IV, which involves the
first phase of data collection in the proposed methodology. Section V covers the development of excitation and reference
signals along with the formulation of the H∞ performance measure. The robust control design and closed-loop analysis
is presented in Section VI. Finally, Section VII presents simulation results for the automated system identification flight
experiment – the second and final phase of flight data collection.

II. Nonlinear Flight Dynamic Modeling
The proposed modeling methodology begins with the postulation of a nonlinear flight dynamic model for the aircraft

of interest. Often, we consider an aircraft to be modeled as a rigid body of mass m. Let unit vectors {i1, i2, i3} define
an earth-fixed North-East-Down (NED) orthonormal reference frame, FI. We assume FI well approximates an inertial
reference frame over the time scales of interest. Let the unit vectors {b1, b2, b3} define the orthonormal body-fixed
frame, FB, centered at the aircraft center of gravity (CG) with b1 out the front of the aircraft, b2 out of the right-hand
side, and b3 out of the bottom. The moment of inertia matrix about the center of mass in FB is denoted I . The position
of the body frame with respect to the inertial frame is given by the vector q = [x y z]T. The attitude of the aircraft is
given by the rotation matrix RIB that maps free vectors from FB to FI. Let v = [u v w]T and ω = [p q r]T be the
translational and rotational velocity of the aircraft with respect to FI and expressed in FB, respectively. Thus, we have
the kinematic equations of motion

q̇ = RIBv (1a)

ṘIB = RIB[ω×] (1b)

where [(·)×] is the skew-symmetric cross product equivalent matrix satisfying [a×]b = a× b for 3-vectors a and b.
Consider the following Euler angle parameterization for RIB:

RIB = e[e3×]ψe[e2×]θe[e1×]ϕ

where ϕ, θ, and ψ are the roll, pitch, and yaw angles of the aircraft, respectively, and where e1 = [1 0 0]T, etc. With
Θ = [ϕ θ ψ]T, Eq. (1b) becomes

Θ̇ =

1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ


︸ ︷︷ ︸

LIB

pq
r

 (2)

We represent the applied force and moment vectors expressed in FB as F = [Fx Fy Fz]
T and M = [Mz My Mz]

T,
respectively, where the specific dependence on body velocity, v, angular velocity, ω, and an actuator state vector, Ω, is
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left implicit for now. For example, these actuators may be control surface deflections of a fixed-wing aircraft or rotor
speeds of a multirotor aircraft. We also parameterize the force and moment model by the vector of unknown parameters,
ϑ, which we ultimately want to identify from large-domain flight data. Altogether, we have the nonlinear rigid body
equations of motion

q̇ = RIBv (3a)

Θ̇ = LIBω (3b)

v̇ = v × ω + gRT
IBe3 +

1

m
F (v,ω,Ω;ϑ) (3c)

ω̇ = I−1 (Iω × ω +M(v,ω,Ω;ϑ)) (3d)

Eq. (3) can be written more compactly in terms of the system’s configuration, ξ = [qT ΘT]T ∈ R6, and generalized
velocity, ν = [vT ωT]T ∈ R6. Let fa = [F T MT]T be the generalized force applied to the system. Then, we can
write Eq. (3) as

ξ̇ = fξ(ξ,ν) (4a)
ν̇ = fν(ξ,ν) + M−1fa(ν,Ω;ϑ) (4b)

where M = diag(mI, I) is the generalized mass matrix of the system. We call f = [fT
ξ fT

ν ]
T the acceleration vector

field, which contains the known dynamics of the system (kinematics, rotating reference frame effects, and gravity). The
aerodynamic model, fa, captures the hypothesized model structure which is parameterized by the unknown vector ϑ. It
can be written as

fa(ν,Ω;ϑ) = Fa(Ω;ϑ)ν +φ(νnl,Ω;ϑ) (5)

where Fa(Ω;ϑ) ∈ R6×6 captures the aerodynamic effects that are linear in the generalized velocity and where νnl

contains functions of the velocity variables that describe the model’s dominant nonlinearities, φ. Note that one could
simply take νnl = ν, but the reference signal and control design may be simpler for a different choice of νnl. As an
example, the longitudinal aerodynamics of a fixed-wing aircraft depend on the angle-of-attack, α = tan−1(w/u), which
appears among the dominant nonlinearities (e.g., α and α2 are important regressor functions).

As the example in this paper, we aim to obtain large-domain excitation data for the small quadrotor UAS shown in
Figure 1. This aircraft was built using a DJI FlameWheel 450 frame and instrumented with a Cubepilot CubeOrange

Fig. 1 Small quadrotor UAS.

flight computer running PX4 firmware. An onboard Raspberry Pi co-computer is included for control law and excitation
implementation over MAVROS. The quadrotor was instrumented with CAN electronic speed controllers (ESCs)
capable of rotor speed measurements and a real-time kinematics (RTK) capable GNSS receiver. The instrumentation,
co-computer setup, and data processing for this aircraft followed the methods detailed in [9, 10].

The quadrotor aircraft considered here is a symmetric “X” configuration as pictured in Figure 2, where Ωi is the
angular speed of the ith rotor, ℓ is the rotor arm length, h is the height of the rotor hubs above the center of gravity,
and σi ∈ {+1,−1} is the direction of the ith rotor according to the right-hand rule in the body frame. The applied
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Fig. 2 Quadrotor geometry

force and moment on the rigid body can be derived using blade-element and momentum theory as detailed in [11].
Considering a second-order Taylor series expansion (Model 3 in [11]), the components of the applied force and moment
vectors can be modeled as

Fx = Kxµ0
u+Kxµw

uw +Kxµb
uδt (6a)

Fy = Kyµ0
v +Kyµw

vw +Kyµb
vδt (6b)

Fz = KzT0
δ2t+Kzµ0

δt+Kzµ(u
2 + v2) +Kzµw

(4wδt− pδa− qδe) (6c)

Mx = KlT0
δ2a+Klµ0

δa+Klµw
(wδa− 2ℓ2pδt− ℓ2qδr/2) +Klµb

vδt

+Klµb,µ0
v +Klµb,µw

vw +Klδruδr (6d)

My = KmT0
δ2e+Kmµ0

δe+Kmµw
(wδe− 2ℓ2qδt− ℓ2pδr/2) +Kmµb

uδt

+Kmµb,µ0
u+Kmµb,µw

uw +Kmδr
vδr (6e)

Mz = KnQ0
δ2r +Knµ0

δr +Knµw
(wδr + pδe+ qδa) +Knµ2

w
pq

+Knµb
(uδa+ vδe) +Knµb,µw

(up+ vq) + Jzpδ̇r (6f)

where K(·) are lumped parameters with appropriate dimensions, Jz is the motor moment of inertia, and the virtual
actuators δ = [δt δa δe δr]

T and δ2 = [δ2t δ
2
a δ

2
e δ

2
r ]

T are given by
δt

δa

δe

δr


︸ ︷︷ ︸

δ

:=


1/4 1/4 1/4 1/4

−ℓ
√
2/2 ℓ

√
2/2 ℓ

√
2/2 −ℓ

√
2/2

ℓ
√
2/2 −ℓ

√
2/2 ℓ

√
2/2 −ℓ

√
2/2

1 1 −1 −1


︸ ︷︷ ︸

Mix


Ω1

Ω2

Ω3

Ω4


︸ ︷︷ ︸

Ω2

and


δ2t
δ2a
δ2e
δ2r


︸ ︷︷ ︸

δ2

:= Mix


Ω2

1

Ω2
2

Ω2
3

Ω2
4


︸ ︷︷ ︸

Ω2

(7)

The uncertain parameters which we ultimately want to identify for the nonlinear model are ϑ = [K(·)].
Since the virtual actuators are neither independently nor directly controlled, we adopt the first-order motor model

Ω̇ = −aΩΩ+ bΩuESC (8)

where aΩ and bΩ are uncertain parameters and uESC is a command vector sent to the motor electronic speed controllers.
The choice of this uncertainty allows for the true values of aΩ and bΩ to change over the course of the flight as they
generally depend on battery voltage [12]. Because of interdependence between the virtual actuators, we consider
the rotor speed vector, Ω, to be the actuator state vector, Ω, in Eq. (4). To retain the physical meaning of the
virtual actuators defined above, we choose the control input to the system to be the virtual actuator command,
u = [ut ua ue ur]

T = MixuESC.
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Comparing Eq. (6) with Eq. (5), we see the state variables that capture the model’s nonlinearities are the components
of νnl = v. Therefore, we choose to design a reference signal that effectively covers the desired domain of body velocity
along with a robust control law that keeps correlation among regressors low while also guaranteeing stability.

III. Linear Parameter-Varying Model
With the system’s dominant nonlinearities specified, the next step is to formulate the system dynamics as an LPV

system with νnl as the scheduling “quasi-parameter” (recognizing that νnl is, in fact, part of the system state). This
allows a control law to be readily designed that stabilizes some desired reference signal for νnl.

Since the dominant nonlinearities of the quadrotor model depend on body velocity, v, we desire v to track some a
priori reference signal vd(t) – the scheduling quasi-parameter for the LPV system. For each fixed vd, we linearize
the system about the equilibrium condition defined by Θ = Θ0, v = vd, ω = 0, and Ω = Ω0. To simplify the LPV
system formulation, we make the following assumption.

Assumption 1 The steady-state roll angle, pitch angle, and motor speeds in translating flight, depend linearly on body
velocity: ϕ0(vd)

θ0(vd)

Ω0(vd)

 = Λvd +

 0

0

Ωhover

 (9a)

where Λ is some constant matrix and Ωhover is the vector of motor speeds in hover.

Next, we compute the Jacobians of the aerodynamic model,

A =
∂fa
∂ν

∣∣∣∣
(vd,0,Ω0(vd))

and BΩ =
∂fa
∂Ω

∣∣∣∣
(vd,0,Ω0(vd))

(10)

Since the chosen control input, u, is the commanded virtual actuator vector (as opposed to motor commands), let

B = BΩM
−1
ix (11)

The matrices A and B have affine dependence on vd:

A = A0 +Auud +Avvd +Awwd (12a)
B = B0 +Buud +Bvvd +Bwwd (12b)

where the elements of the matrices A(·) and B(·) that are functions of the unknown parameter vector, ϑ, are given in
Appendix A.

For the LPV model of the aircraft dynamics, consider the following simplifying assumption.

Assumption 2 The roll and pitch angles remain sufficiently small such that the acceleration vector field in Eq. (4) can
be taken to be linear in ξ and ν, with affine dependence on the scheduling parameter vd. That is,

f(ξ,ν) = f(ξ0(vd),ν0(vd)) +Aξ(vd)(ξ − ξ0(vd)) +Aν(vd)(ν − ν0(vd)) (13)

where Aξ(vd) =
∂f
∂ξ

∣∣∣
(ξ0(vd),ν0(vd))

and Aν(vd) =
∂f
∂ν

∣∣∣
(ξ0(vd),ν0(vd))

are affine in vd.

Assumption 2 effectively defines an implicit relationship between roll/pitch angles and body velocity such that the
nonlinearities in RIB and LIB are replaced by linear dependence on Θ which in turn depends linearly on vd. Let

∆x =

∆ξ

∆ν

∆δ

 (14)
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where ∆ξ = ξ− ξ0(vd), ∆ν = ν − ν0(vd), and ∆δ = Mix∆Ω = Ω−Ω0(vd). Also, let ∆u = u−u0(vd) be the
input perturbation. Then, an LPV model of the system can be written as ∆ξ̇

∆ν̇

∆δ̇

 =

[
Aξ(vd) Aν(vd) 0

0 0 0

]
+

 0 0 0

0 M−1A(vd) M−1B(vd)

0 0 −aΩI




︸ ︷︷ ︸
A

 ∆ξ

∆ν

∆δ

+

[
0

bΩI

]
︸ ︷︷ ︸

B

∆u (15)

More compactly, we have
∆ẋ = A(vd,θ)∆x+B(θ)∆u (16)

where θ is the vector of unknown elements of the constant matrices that define the affine LPV system in Eq. (15).
Since we are simultaneously stabilizing a reference trajectory and exciting the aircraft dynamics about it, we

decompose the input vector, u, into two parts – a control input uc and a normalized excitation input ue. In general, we
write

u = uc +Rue (17)

for some constant invertible scaling matrix R that defines the effective excitation input ũe = Rue. We also define a
performance output that represents some scaled value of the perturbation from the desired velocity reference:

z = Q−1(v − vd) = Q−1∆v (18)

for some constant invertible matrix Q. Thus, the LPV system (16) is now written as

∆ẋ = A(vd,θ)∆x+Bc(θ)∆uc +Be(θ)ue (19a)
z = C∆x (19b)

where Bc = B, Be = BR, and the output matrix C is constructed using Eq. (18).
Since every affine description can be written as a polytopic one (see [13] and the references therein), we represent

the LPV system in Eq. (19) as polytopic in the scheduling variable, vd. Let

vd ∈ [vmin,vmax] =: Pvd (20)

Then we can write the system in Eq. (19) as the convex combination

Λ(vd,θ) :=

[
A(vd,θ) Bc(θ) Be(θ)

C 0 0

]
=

N∑
i=1

αi(vd)

[
Ai(θ) Bc(θ) Be(θ)

C 0 0

]
=:

N∑
i=1

αi(vd)Λi(θ) (21)

where
N∑
i=1

αi(vd) = 1

This equation defines a polytope with N = 23 vertices given by the corners of the box constraint in Eq. (20), where each
vertex system, Λi(θ) is uncertain for

θ ∈ [θmin,θmax] =: Pθ (22)

Thus for each i ∈ {1, . . . , N}, we have

Λi(θ) =

Mi∑
j=1

βji (θ)

[
Aj
i Bj

c Bj
e

C 0 0

]
=:

Mi∑
j=1

βji (θ)Λ
j
i ,

Mi∑
j=1

βji (θ) = 1 (23)

Therefore, in order to design a control law we need only identify small perturbation linear models for each ith vertex of
the polytopic LPV system. The uncertainty polytope vertices are then defined using the parameter confidence intervals
found in the parameter estimation process. The resulting description of the system is a nested polytope, as depicted in
Figure 3 for two scheduling parameters ρ1 and ρ2. In this figure, each point in the scheduling parameter space contained
within the blue polytope defines an uncertain LTI system. The true LTI system at that parameter value is defined at
some point in the orange polytope, which lies in the uncertain parameter space (axes not shown).
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Fig. 3 Nested polytopic description.

IV. Vertex Model Identification
In order to proceed with identification of the polytopic LPV model (21), we assume there exists a set of baseline

control laws that locally stabilize the set of steady flight conditions defined by the vertices of the polytope, Pvd . This is
often a model-free control law such as proportional-integral-derivative (PID) control. Using this control law, flight test
data is collected at the vertices of Pvd . In this initial model identification process, the parametric uncertainty is also
accurately characterized, yielding the polytopic uncertain LPV model (23).

For each LPV vertex system, we identify the elements of each matrix Ai that depend on unknown aerodynamic
parameters, K(·), from flight data. The parameters aΩ and bΩ, however, are identified separately from flight data. For
the specific aircraft considered in this work, they were found to be aΩ = 12.31± 0.21 and bΩ = (1.399± 0.182)× 104.
Each of the vertex LTI models was identified using the equation-error “grey-box” identification process detailed in
Appendix B. This method solves the parameter estimation problem using ordinary least-squares for the unknown
elements of each Ai.

Due to hardware implementation restrictions, the quadrotor LTI dynamics were excited using body velocity and yaw
rate reference commands. This was mainly due to the inability to command “broken-loop” excitation signals from the
co-computer over MAVROS. Although the use of velocity commands is not ideal because the resulting actuator states
may be correlated, this choice of excitation makes initial model identification easier and was found to be sufficient for the
initial phase of model identification. The reference command excitation signal was a 4-axis, 30 second multisine signal
with uniform power spectral density in the frequency range from 0.2 to 2 Hz, generated using SIDPAC software [14]. The
multisine body velocity reference components were superimposed over constant body velocity commands corresponding
to the vertices of the LPV polytope described in Section III.

For this example, the maximum and minimum velocities were chosen to be +5 m/s and −5 m/s, respectively, in all
components. For the flight test data collection, the constant body velocity reference was commanded for 10 seconds prior
to excitation to allow for experimental determination of the equilibrium flight condition, {x0(vd),u0(vd)}. Because
the baseline controller performance is limited, the equilibrium condition from flight data does not perfectly align with
the commanded velocity, as shown in Table 1. Note, in particular, that for vertices corresponding to descending flight,
the magnitude of the actual downward velocity (w0) is much smaller than the commanded value. The equation error
least squares parameter estimation was conducted for each axis of each vertex system using these data. The results are
tabulated in Table 2. The coefficient of determination is poor for flight conditions where the quadrotor is descending
through its rotor wake. We note, however, that poor results are perfectly acceptable for the proposed use, provided the
parametric uncertainty is well characterized for the robust LPV controller.

The identified LTI models along with the estimated parameter variances were used to define the uncertain LPV
model described by Eq. (19). This model was then validated against an independent maneuver generated with a 4-axis
multisine about the hover condition. From this maneuver, the time derivative of the state vector from flight data, ẋf ,
was obtained along with the modeled state derivative from Eq. (19), ẋm. The validation time history of K samples is
shown in Figure 4. Let ẋm,i and ẋf,i be the K × 1 column vectors containing the time history of the respective time
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Table 1 Flight Data Vertex Equilibria

Vertex u0 v0 w0 ϕ0 θ0 δt,0 δa,0 δe,0 δr,0

[m/s] [m/s] [m/s] [m/s] [deg] [deg] [rad/s] [rad/s] [rad/s] [rad/s]
[−5 −5 −5]T −4.99 −5.04 −4.20 −10.87 9.28 691.4 −36.7 29.0 310.5

[+5 −5 −5]T 4.95 −5.04 −4.17 −10.44 −8.05 685.0 −34.1 −1.5 39.2

[−5 +5 −5]T −5.01 5.03 −3.95 8.55 8.11 689.0 −2.8 25.3 34.9

[+5 +5 −5]T 5.03 5.01 −4.00 8.04 −8.98 679.5 −5.8 −4.0 305.4

[−5 −5 +5]T −4.83 −4.68 2.88 −5.00 3.17 554.9 −45.0 28.0 367.6

[+5 −5 +5]T 4.73 −4.61 2.72 −5.14 −4.08 521.8 −34.6 −18.3 158.9

[−5 +5 +5]T −4.85 4.75 3.00 3.80 3.00 546.9 14.0 23.4 −9.8

[+5 +5 +5]T 4.64 4.73 2.86 3.85 −4.83 525.8 3.49 −15.8 298.1

Table 2 LTI Equation Error Coefficient of Determination, R2 [%]

LTI State Equation Axis
Nominal Vertex u̇ v̇ ẇ ṗ q̇ ṙ

[−5 −5 −5]T 30.1 39.3 81.2 83.2 88.9 95.5
[+5 −5 −5]T 39.8 29.9 86.4 84.0 91.4 94.1
[−5 +5 −5]T 40.4 38.1 78.8 76.8 84.5 95.4
[+5 +5 −5]T 38.6 33.2 69.7 80.0 85.0 94.6
[−5 −5 +5]T 9.4 15.7 97.8 80.2 75.2 95.0
[+5 −5 +5]T 19.8 12.6 98.9 75.4 85.1 96.6
[−5 +5 +5]T 10.7 18.3 96.5 80.3 85.3 93.7
[+5 +5 +5]T 17.4 14.3 97.6 79.0 83.3 95.9

derivatives for the ith state. Theil’s inequality coefficient (TIC),

TIC =

√
1
K (ẋm,i − ẋf,i)T(ẋm,i − ẋf,i)√

1
K ẋT

m,iẋm,i +
√

1
K ẋT

f,iẋf,i

(24)

and normalized root-mean squared error (NRMSE),

NRMSE =
1

range(ẋf,i)

√
1

K
(ẋm,i − ẋf,i)T(ẋm,i − ẋf,i) (25)

were then computed and are given in Table 3. The model validates well with small values of TIC and NRMSE, especially
in the translational dynamics. There is a slight bias apparent in the rotational dynamics, causing larger values of TIC
and NRMSE.

Table 3 LPV model validation metrics

Axis u̇ v̇ ẇ ṗ q̇ ṙ

TIC 0.110 0.049 0.104 0.274 0.355 0.352
NRMSE 0.036 0.021 0.035 0.094 0.119 0.148
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Fig. 4 LPV model independent validation.

V. Signal Design
With the polytopic LPV model identified and parametric uncertainty characterized, we can design the input signals to

be used in the nonlinear model identification experiments. The two signals that need to be designed are the body velocity
reference, vd(t), that covers the desired domain and the superposed command signal ue that is intended to excite the
vehicle dynamics about the reference motion. Since body velocity is an explanatory variable which appears in regressor
functions that also depend nonlinearly on actuator states, δ, we want to ensure the vd and ue are uncorrelated. An
efficient way to accomplish this is to design multisine signals for vd and ue concurrently such that they are orthogonal
and phase-optimized [15]. Inspired by [16], we select the frequency range of the velocity reference to be sufficiently low
in the interval [0.01, 0.5] Hz, while the motor excitation signals are higher-frequency, in the interval (0.5, 5] Hz. The
upper limit on the excitation frequency was chosen based on recommendations from [17], but slightly lower due to
concerns about damaging the ESCs. Another approach for determining the appropriate frequency range is to analyze
the vehicle’s response to frequency sweep data in each of the virtual actuators. Using SIDPAC’s mkmsswp.m function,
these signals were generated and are shown in Figure 5, normalized to unit amplitude, with their spectral content given
in Figure 6. The correlation coefficients and plots of this signal are displayed in Figure 7, showing good coverage of the
velocity space in the vd signals and proper decorrelation overall.

Since the excitation input of T seconds is known, we can now make an informed choice of the performance output
weighting, Q, and excitation input weighting, R. While in typical H∞ control approaches the exogenous input is
unknown, that is not the case here; we have direct knowledge of the “disturbance” that is perturbing the vehicle motion
from equilibrium flight. We select tunable excitation input magnitudes ∆t, ∆a, ∆e, and ∆r. Then, the R matrix is
chosen such that a normalized excitation input, ue, that is defined to have unit energy,√∫ T

0

uT
e (t)ue(t)dt = 1 (26)
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Fig. 6 Velocity reference and motor excitation multisine spectra.

results in the effective excitation inputs having magnitudes ∆t, ∆a, ∆e, and ∆r. Thus, R is defined as

R =

√
nuT

2
diag(∆t,∆a,∆e,∆r) (27)

where nu = 4. Similarly, we define maximum body velocity perturbations ∆u, ∆v , and ∆w. The performance output,
z = Q−1∆v, is then scaled such that the worst-case velocity perturbations corresponding to step changes of ∆u, ∆v,
and ∆w will generate a performance output that also has unit energy. Therefore, Q is chosen to be

Q =
√
nzT diag(∆u,∆v,∆w) (28)

where nz = 3. Note the factor of 1/
√
2 that appears in R is not present in Q due to the asymmetry of the worst-case
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Fig. 7 Velocity reference and motor excitation multisine correlation.

step perturbations mentioned above. This normalization provides a clear control objective of ensuring that the worst case
energy gain from the normalized excitation input, ue, to the normalized performance output, z, is no greater than one.

Recall a signal ξ is said to be an element of the vector space L2 if its L2 norm is finite, meaning

∥ξ∥L2
=

√∫ ∞

0

ξT(t)ξ(t)dt <∞

We are interested in prescribing the worst-case L2-gain from ue ∈ L2 to z ∈ L2 for all uncertain parameter values,
θ ∈ Pθ. Thus the design goal is stated as

sup
θ∈Pθ

∥ue 7→ z∥∞ = sup
0̸=ue∈L2, θ∈Pθ

∥z∥L2

∥ue∥L2

= 1 (29)

Remark 1 The control objective stated above for system excitation is contrast with the typical robust control problem
where the aim is to suppress disturbances. Here, we wish to create sufficiently rich “disturbances” and to only bound
their effect on the vehicle response.

VI. Robust LPV Control Law Design
For the control law synthesis, we consider the polytopic uncertain LPV system (23) without the position and yaw

states since they are ignorable coordinates. For this system, a static state feedback control law that satisfies Eq. (29)
can readily be obtained. Adapting Theorem 2 of [18] to the system in Eq. (19) for the case with no pole placement
constraints or H2 norm objectives, we have the following Lemma.

Lemma 1 (Theorem 2 in [18]) Consider the polytopic linear, parameter-varying system with polytopic uncertainty in
Eq. (19). Given a constant γ > 0, if there exist symmetric positive definite matrices Xj

i , matrices Si, and a matrix H

11



for all i ∈ {1, · · · , N} and j ∈ {1, · · · ,Mi} such that
U j
i +U j

i

T
−Xj

i +HT −U j
i Bj

e HTCT

−Xj
i +H −U j

i

T
−(H +HT) 0 −HTCT

Bj
e
T

0 −I 0

CH −CH 0 −γ2I

 ≺ 0 (30)

where
U j
i = Aj

iH +Bj
cSi

then the static state feedback

∆uc = K(vd)∆x, K(vd) =

N∑
i=1

αi(vd)Ki, Ki = SiH
−1 (31)

renders the H∞ norm of the closed-system less than γ for all vd ∈ Pvd and all θ ∈ Pθ.

Using this lemma, we can choose γ = 1 yielding a convex feasibility problem that can be solved using a linear matrix
inequity (LMI) solver. If the problem is not feasible, then there are three remediations, all of which may be used. First,
the input magnitudes ∆t, ∆a, ∆e and ∆r can be reduced. Second, the allowed output magnitudes ∆u, ∆v , and ∆w can
be increased. Third, the uncertainty in the identified LTI models can be reduced through refined model identification.

For the quadrotor model identified in Section IV, we chose the tuning parameters

∆t = ∆a = ∆e = ∆r = 0.1

∆u = ∆v = ∆w = 5
(32)

The convex feasibility problem in Lemma 1 was solved using CVX [19, 20] in Matlab with the Mosek solver [21].
The total number of scalar optimization variables was 332,920 with 45,768 constraints, and the total computation
time∗ was 52 seconds using default precision. The final result is eight feedback gain matrices that are used to compute
K(vd) from Eq. (31). In implementation, the equilibrium state and input vectors are similarly computed as convex
combinations of the vertex equilibria.

VII. Simulation
The synthesized robust LPV control law was simulated with the identified LPV model. First, the uncertain parameters

were evaluated at their nominal values, θ0, and the following closed-loop system was simulated in Matlab using ode45:

ẋ = A(vd,θ0)(x− x0) +Bc(θ0)(uc − u0) +Be(θ0)κue + ẋ0 (33)

for some constant κ > 0. Note the designed input magnitudes of ∆t, ∆a, ∆e and ∆r need not be used, as they are just
used to normalize the performance objective. If their L2 norm is doubled, for instance, then the worst-case L2 norm
of the velocity perturbation is simply doubled as well. The important result is that we prescribe this gain. For this
demonstration, however, the excitation multiplier κ was set to unity. The equilibrium state derivative, ẋ0, in Eq. (33)
was computed with

ẋ0 =
∂x0(vd)

∂vd

dvd

dt
(34)

In Figure 8, the body velocity reference is plotted in black dashed lines along with the actual body velocity in solid lines,
where the time history shows sufficient tracking of the velocity reference command. The perturbation from the reference
was also computed and is displayed in Figure 9. Here, the perturbations remain below an acceptable threshold and
qualitatively indicate good information content.

For each axis of the nonlinear aerodynamic model given in Eq. (6), the correlation coefficients of the regressors
were computed and are shown in Figure 10. Here we see good decorrelation of most regressors, indicating that we
should be able accurately identify the aerodynamic parameters in Eq. (6) (assuming a sufficiently high signal-to-noise
ratio, etc.). The regressors that show extremely high correlation amongst each other are those that depend on δ(·). This
is expected since the magnitude of excitation was small. To further decorrelate these regressors, one would set some
larger κ > 1 for the final flight test experiment.

∗Performed on a laptop with an Intel Core i7-1185G7 and 16GB DDR4-3200 memory
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Fig. 8 Nominal model simulation body velocity and reference.
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Fig. 9 Nominal model simulation body velocity perturbation.

VIII. Conclusions and Future Work
A novel modeling methodology has been presented that supports data collection for the experimental identification

of large-domain nonlinear flight dynamic models. Critically, a robust linear, parameter-varying (LPV) control result
allows system excitation for unstable aircraft that is safe (with a user-defined bound on the input-to-state amplification)
and effective (with sufficient excitation to identify model parameters). The method has a low barrier to implementation,
requiring only an initial set of locally stabilizing control laws, such as PID controllers. With a nonlinear model
postulated, initial flight data is collected that informs the identification of an LPV model for the aircraft dynamics. For a
multirotor, we have shown this step involves only eight maneuvers, each corresponding to a body velocity reference
condition. The next step of this process consists of excitation and reference signal design and control law synthesis
via a linear matrix inequality. For the multirotor, a 7-axis multisine signal is designed to ensure the body velocity
reference is uncorrelated from the actuator commands. The convex feasibility problem is readily solved, yielding a
parameter-varying state-feedback robust H∞ control law. Finally, the second phase of data collection is conducted
using the robust LPV control law in order to obtain rich data over the entire flight envelope. At the time of publication, a
flight test program was being developed to implement the procedure on the aircraft shown in Figure 1.
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Fig. 10 Nonlinear model regressor correlation.
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A. Quadrotor LPV Aerodynamic Model Structure
The elements of the matrices A(·) and B(·) from Eq. (12) that are functions of the unknown parameter vector, ϑ, are

indicated with a “•” as follows.

A0 =



• 0 0 0 0 0

0 • 0 0 0 0

0 0 • 0 0 0

0 • 0 • 0 0

• 0 0 0 • 0

0 0 0 0 0 0


Au =



• 0 • 0 0 0

0 • 0 0 0 0

• 0 • • • 0

• • • • • 0

• • • • • 0

• • • • • 0



Av =



• 0 0 0 0 0

0 • • 0 0 0

0 • • • • 0

• • • • • 0

• • • • • 0

• • • • • 0


Aw =



• 0 0 0 0 0

0 • 0 0 0 0

0 0 • • • 0

• • • • • 0

• • • • • 0

• • • • • 0



B0 =



0 0 0 0

0 0 0 0

• 0 0 0

0 • 0 0

0 0 • 0

0 0 0 •


Bu =



• 0 0 0

0 0 0 0

• • • •
• • • •
• • • •
• • • •


Bv =



0 0 0 0

• 0 0 0

• • • •
• • • •
• • • •
• • • •


Bw =



0 0 0 0

0 0 0 0

• • • •
• • • •
• • • •
• • • •



B. Equation-Error Grey-Box Identification
Consider the linear, time-invariant state equation

ẋ = Ax+Bu (35)

where the elements of A and B depend on both known constants (e.g. gravitational acceleration) and unknown
parameters (e.g. aerodynamic coefficients). Let x = [x1 · · · xnx

]T and u = [u1 · · · unu
]T. Define the index sets

IA = {(i, j) | Aij unknown, i, j = 1, · · · , nx} (36)
IB = {(i, j) | Bij unknown, i = 1, · · · , nx, j = 1, · · · , nu} (37)

and their “complements”

IA = {(i, j) | Aij known, i, j = 1, · · · , nx} (38)

IB = {(i, j) | Bij known, i = 1, · · · , nx, j = 1, · · · , nu} (39)

Let the row vector of regressors for the ith row of the state equation be defined as

hi =
[
xT
j uT

k

]
, (i, j) ∈ IA, (i, k) ∈ IB (40)
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where for each i, xj and uk are column vectors containing the components of x and u defined by the index sets IA and
IB . Then, let the measurement for the ith row of the state equation be

yi = ẋi −
∑
j

Aijxj −
∑
k

Bikuk, (i, j) ∈ IA, (i, k) ∈ IB (41)

For each row of the state equation, define the column vector of parameters

θ(i) =

[
AT
j

BT
k

]
, (i, j) ∈ IA, (i, k) ∈ IB (42)

where for each i, Aj and Bk are constructed from the elements of the ith rows of A and B according to the index sets
IA and IB , respectively. Note: The preceding derivation and notation is presented for easy implementation in Matlab.

With these definitions, a sample has the model

yi = hiθ
(i), i = 1, · · · , nx (43)

for each i = 1, · · · , nx. Now suppose we take K samples of yi and hi, where the kth sample is denoted yi(k), x(k),
and u(k), etc. Let the measurements be subjected to additive, white, Gaussian noise such that

zi(k) = yi(k) + wi(k), k = 1, · · · ,K, i = 1, · · · , nx (44)

Stacking the K measurements and regressors, we obtain

yi =


yi(1)

yi(2)
...

yi(K)

 , Hi =


hi(1)

hi(2)
...

hi(K)

 , and wi =


wi(1)

wi(2)
...

wi(K)

 (45)

Then, the measurement equations are
yi = Hiθ

(i), i = 1, · · · , nx (46)

from which one obtains the least square error parameter estimates

θ(i) = (HT
i Hi)

−1HT
i yi, i = 1, · · · , nx (47)
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