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Wind measurements in the lower atmosphere are vital to the expansion of air mobility
operations, providing boundary condition data for numerical weather models and supporting
planning and control systems for improved weather tolerance and safety. Traditional approaches
to wind estimation from flight data rely on linearization of the flight dynamic model and are
therefore only valid near the nominal flight condition. To obtain accurate wind estimates in
maneuvering flight, this “small perturbations” restriction must be relaxed. This paper presents
the design and simulation of a nonlinear, passivity-based observer for aircraft in wind with
global exponential convergence guarantees. The main results include explicit formulas for
implementing the observer as well as a linear matrix inequality that can be used to optimize wind
estimate convergence. The wind observer is implemented using flight test data, demonstrating
good performance even in maneuvering flight through turbulent air.

I. Introduction

Weather patterns over complex terrain are complicated and ever-changing, yet are crucially important to understand
for safe air mobility operations [1]. The importance of accurate, real-time weather prediction only increases as

Advanced Air Mobility (AAM) and Urban Air Mobility (UAM) missions mature to provide safe, efficient, and ubiquitous
automated air transportation services in urban and suburban areas [2]. As the air mobility concept matures, the need
grows for higher weather tolerance and thus relaxed margins for flight safety [3–6]. The expansion of weather-tolerant
operations will not just be made possible through more accurate model-based atmospheric predictions on the mesoscale
and microscale, but also through improved atmospheric measurements at the vehicle level. In fact, the latter can
contribute to the former by providing timely, in situ measurements of wind and related atmospheric parameters such as
pressure, temperature, and humidity as illustrated in Figure 1.
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Fig. 1 Enabling air mobility.

Traditional in situ sampling methods such as weather balloons are impractical in an urban setting and only
capture a few data points within the atmospheric boundary layer (ABL) at sparsely distributed locations. One of the
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fastest-emerging solutions to bring higher temporal and spatial resolution to atmospheric measurements is the use of
small unmanned aircraft systems (UAS) [7–12]. The use of UAS enables better ABL profiling and microscale numerical
weather prediction (NWP) using high-rate in situ measurements. Of particular interest are approaches that do not
require specialized sensors such as anemometers to measure wind velocity. The motion of the aircraft in response to
external disturbances can be used to continuously estimate the wind at the aircraft’s location. Minimal instrumentation
requirements make aircraft-based wind estimation at low altitudes viable for a variety of small crewed and uncrewed
aircraft. The opportunity for “crowdsourced” sensing could provide a rich data set that can be used across disciplines
and applications to enable safer, more efficient, and weather-tolerant air mobility operations [13, 14].

While the incorporation of weather sensing on air mobility vehicles presents a great opportunity, there are concerns
that current approaches would not enable access to some regions where data may be needed, such as areas subject to
high winds. Most approaches to aircraft-based wind estimation rely on a linear flight dynamic modeling approach that
assumes small perturbations from a nominal flight condition (e.g., forward flight at constant altitude). While these
methods work well close to the designed operating condition, the underlying assumptions can be violated in the presence
of strong wind. These concerns present a need to expand the range of flight conditions for which accurate wind estimates
and atmospheric measurements can be made.

To improve capability to predict weather in an urban environment, this paper presents the design and simulation of a
global nonlinear passivity-based wind observer for aircraft. This observer provides real-time estimates of the wind
valid across the entire flight envelope. Such an observer creates a capability to expand the range of flight conditions for
which accurate wind estimates can be made. One of the main benefits of this nonlinear observer is that it comes with
rigorous guarantees on the wind estimate convergence over the entire flight envelope, thus increasing the level of trust in
whatever autonomous mission for which the estimation scheme is employed. This is where traditional linear approaches
and linearization-based approaches such as the extended Kalman filter can come up short. Kalman filtering approaches
to wind estimation tend to be very sensitive to assumptions about the statistics of the wind disturbance, which is only
exacerbated for flight across a wide variety of conditions.

This paper is organized as follows. Section II introduces the aircraft in question and derives the equations of motion
in wind for which the observer is designed. Section III provides an overview of the theory of passivity-based observers
as presented in [15, 16]. Next, the main result of this paper is detailed in Section IV where the passivity-based observer
for aircraft in wind is designed. Finally, Section V presents both simulation and flight test results for the observer,
enabling the evaluation of the observer’s performance even when assumptions are violated.

II. Aircraft Dynamics in Wind

A. Rigid-Body Dynamics
Consider an aircraft, modeled as a rigid body of mass m. Let unit vectors {i1, i2, i3} define an earth-fixed

North-East-Down (NED) orthonormal reference frame, FI. As the notation FI suggests, we take this frame to be an
inertial reference frame over the time and space scales of vehicle motion. Let the unit vectors {b1, b2, b3} define the
orthonormal body-fixed frame, FB, centered at the aircraft center of gravity (CG) with b1 out the front of the aircraft,
b2 out of the right-hand side, and b3 out of the bottom completing the right-hand rule. The position of the body frame
with respect to the inertial frame is given by the vector q = [x y z]T. The attitude of the aircraft is given by the rotation
matrix, RIB, that maps free vectors from FB to FI. Consider the Euler angle parameterization

RIB = eS(e3)ψeS(e2)θeS(e1)ϕ (1)

where ϕ, θ, and ψ are the roll, pitch, and yaw angles of the aircraft, respectively. Here, e1 = [1 0 0]T, etc., and S(·) is
the skew-symmetric cross product equivalent matrix satisfying S(a)b = a× b. Let v = [u v w]T and ω = [p q r]T be
the translational and rotational velocity of the aircraft with respect to FI expressed in FB, respectively. Thus, we have
the kinematic equations of motion

q̇ = RIBv (2a)

ṘIB = RIBS(ω) (2b)
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With Θ := [ϕ θ ψ]T, Eq. (2b) becomes

Θ̇ =

1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ


︸ ︷︷ ︸

LIB

pq
r

 (3)

Alternatively, we may parameterize the attitude of the aircraft using the heading vector, λ = RT
IBe1, and tilt vector,

ζ = RT
IBe3, as done in [17–20]. Then, the attitude kinematics become

λ̇ = λ× ω (4a)

ζ̇ = ζ × ω (4b)

where the rotation matrix, RIB, may be reconstructed as

RIB(λ, ζ) =
[
λ S(ζ)λ ζ

]T
(5)

Let us represent the aerodynamic force and moment acting on the aircraft expressed in FB as F = [X Y Z]T and
M = [LMN ]T. Define p = mv to be the linear momentum of the aircraft and h = Iω to be the angular momentum
vector about the center of mass, both expressed in FB. Here, I is the moment of inertia matrix about the center of mass
in FB. Altogether, the equations of motion in still air are

q̇ = RIB(λ, ζ)v (6a)

λ̇ = λ× ω (6b)

ζ̇ = ζ × ω (6c)
ṗ = p× ω +mgζ + F (6d)

ḣ = h× ω +M (6e)

where we have mixed momentum and velocity notation.

B. Dynamics in a Wind Field
Before addressing the aerodynamic forces and moments, consider the aircraft’s motion in wind. In general and

independent of the aircraft’s motion, the wind is a time-varying vector field, W : R3 × R → R3, defined in the inertial
frame. Let the instantaneous wind vector as experienced by the aircraft be

w(t) = W (q(t), t) (7)

The apparent wind, w, is the part of the aircraft state defined by evaluating the wind field, W , at the aircraft’s position,
q, at time t. Using the chain rule, the time derivative of w is

dw

dt
=
∂W

∂t
(q, t) +∇W (q, t)

dq

dt
(8)

in agreement with [12]. Note the we have arrived at Eq. (8) under the implicit assumption that the vehicle does not
affect the flow field in which it is immersed. When the aircraft’s velocity through a wind field is significantly faster than
the time rate of change of the eddies (such as for fixed-wing aircraft), we can make a frozen turbulence assumption [21],
meaning ∂W

∂t (q, t) = 0. Therefore, Eq. (8) becomes

ẇ = ∇W (q)q̇ (9)

Since we cannot deterministically model the gradient of the wind field evaluated along the aircraft’s path, ∇W (q), the
apparent wind is typically modeled as Brownian motion: “ẇ = noise.” Conversely, if the aircraft is not moving, the
eddies are being convected over the aircraft by the bulk flow. Therefore, ẇ would instead become

ẇ =
∂W

∂t
(t) (10)
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where ∂W
∂t is the time rate of change of wind velocity at the aircraft’s position due to the convected eddies. This process

is also considered random, leading to the same Brownian motion model.
In addition to the wind velocity, one may also want to estimate the gradient of the wind field. Independent of the air

vehicle’s geometry, we may define the gradient of the wind in the body frame as

ΦW := RT
IB∇WRIB (11)

Then, the body-frame gradient of the wind field can be decomposed into its symmetric and skew-symmetric parts [22],

ΦW =
1

2
(ΦW +ΦT

W ) +
1

2
(ΦW −ΦT

W ) (12)

The angular velocity of the wind in the body frame, ωW , is defined by

ωW :=
1

2
(ΦW −ΦT

W )∨ (13)

where (S(a))∨ = a.
While ωW is in fact the vector field of body-frame wind angular velocity, each aircraft will experience a different

gradient based on its geometry. In the case of fixed-wing aircraft, for example, Etkin [23] presents that the only
non-negligible gradients due to the apparent wind in the body frame, wb = [uw vw ww]

T = RT
IBw, are

pw =
∂ww
∂y

qw = −∂ww
∂x

rw =
∂vw
∂x

(14)

Here, x, y, and z are coordinates for FB. Eq. (14) reflects an assumption that
a) the body-longitudinal component of wind is constant/uniform over the entire aircraft,
b) the body-lateral component of wind varies only along the aircraft’s length, and
c) the body-vertical component of wind varies only along the aircraft’s length and span.

The vector ωw = [pw qw rw]
T as defined by Eq. (14) is called the apparent angular velocity of the wind. Therefore, a

fixed-wing aircraft experiences the body frame wind gradient

Φw :=

 0 0 0

rw 0 0

−qw pw 0

 (15)

For other types of aircraft, Φw may take on a different structure, and ωw will be defined accordingly.
If one wants to estimate gradients of the wind, a dynamic model for ωw must be obtained. In general, we can take

the time derivative of Eq. (11) to obtain

Φ̇W = ṘT
IB∇W (q, t)RIB +RT

IB

d

dt
(∇W (q, t))RIB +RT

IB∇W (q, t)ṘIB (16)

which requires computing the time rate of change of the wind gradient along the path of the aircraft, d
dt (∇W (q, t)).

This cannot be deterministically modeled due to the randomness of turbulence and is thus treated as noise. Since Φw is
the body frame gradient experienced by the aircraft, we define ω̇w using the respective elements of the matrix equation
in Eq. (16) according to the structure of Φw. Then using Eqs. (2b) and (3) in Eq. (16), we obtain

ω̇w =
∂ωW
∂Θ

LIBω

∣∣∣∣
∇W=RIBΦwRT

IB

+ noise (17)

where ∂ωW

∂Θ is computed using the right-hand side of Eq. (11). In general, this expression may be quite complicated
since it depends on the structure of Φw. For a fixed-wing aircraft, however, it simplifies to

ω̇w =

 rqw

prw − rpw

−pqw

+ noise (18)
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We recognize the aerodynamic forces and moments only depend on the air-relative velocity. Therefore,
F = F (vr,ωr,u) and M = M(vr,ωr,u), where u are the aircraft control inputs and

vr = v −RT
IBw (19a)

ωr = ω − ωw (19b)

Taking the time derivative of Eq. (19a) gives

v̇r = v̇ − ṘT
IBw −RT

IBẇ

= v × ω + gRT
IBe3 +

1

m
F (vr,ωr,u) +RT

IBS(ω)w −RT
IBẇ (20)

Noting that RT
IBS(ω)w = −RT

IBw × ω and making use of Eq. (19a), we have

v̇r = (vr +RT
IBw)× ω + gRT

IBe3 +
1

m
F (vr,ωr, δ)−RT

IBw × ω −RT
IBẇ

= vr × ω + gRT
IBe3 +

1

m
F (vr,ωr,u)−RT

IBẇ (21)

Here we have chosen to use variables vr and w, but any pair of vectors from the wind triangle relation Eq. (19a) could
be used. While we have used relative velocity vr for translation, we choose the angular velocity states ω and ωw because
typically ω is directly measurable. Using ẇ as given by Eq. (8) along with q̇ from Eq. (2a), we obtain

v̇r = vr × ω + gRT
IBe3 +

1

m
F (vr,ωr,u)−RT

IB∇W (RIBvr +w)−RT
IB

∂W

∂t

= vr × ω + gRT
IBe3 +

1

m
F (vr,ωr,u)−ΦW

(
vr +RT

IBw
)
−RT

IB

∂W

∂t
(22)

Altogether, the equations of motion of an aircraft in a non-uniform, time-varying wind field are

q̇ = RIBvr +w (23a)

λ̇ = λ× ω (23b)

ζ̇ = ζ × ω (23c)

v̇r = vr × ω + gζ +
1

m
F (vr,ωr,u)−ΦW (vr +RT

IBw)−RT
IB

∂W

∂t
(23d)

ẇ = RIBΦW

(
vr +RT

IBw
)
+
∂W

∂t
(23e)

ω̇ = I−1 (Iω × ω +M(vr,ωr,u)) (23f)

ω̇w =
∂ωW
∂Θ

LIBω

∣∣∣∣
∇W=RIBΦwRT

IB

+ noise (23g)

C. Simplified Dynamics for Passivity-Based Observer Design
In order to simplify the nonlinear observer design, consider the following two assumptions.

Assumption 1. The wind field is uniform and steady. As a consequence, ΦW = 0 =⇒ ωw ≡ 0 and ẇ = 0.

Assumption 2. For the purpose of estimation, the aircraft’s aerodynamics evolve on a time scale significantly slower
than the observer dynamics such that at any point in time, the aerodynamics may be taken to be linear in vr and ω with

F = Fvvr + Fωω + F0(u) (24)
M = Mvvr +Mωω +M0(u) (25)

Note that in Eqs. (24) and (25), Fv , Mv , Fω , and Mω are matrices, while F0 and M0 are vector-valued. The effect
of Assumption 2 is that the quantities F(·) and M(·) are treated as slowly-varying parameters. For example, the values
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of F(·) and M(·) for a fixed-wing aircraft generally depend on dynamic pressure, 1
2ρv

T
r vr, which we can assume to vary

slowly compared to the observer dynamics. The plant dynamics for which we want to design a nonlinear observer are

q̇ = RIBvr +w (26a)

λ̇ = λ× ω (26b)

ζ̇ = ζ × ω (26c)
ω̇ = I−1

(
Iω × ω +Mvvr +Mωω +M0(u)

)
(26d)

v̇r = vr × ω + gζ +
1

m

(
Fvvr + Fωω + F0(u)

)
(26e)

ẇ = 0 (26f)

The state of this system is defined by the vector x = [qT λT ζT ωT vT
r wT]T ∈ Rn with dynamics ẋ = f(x,u), where

the input vector, u ∈ U ⊂ Rm, is known.
It is often the case that aircraft are instrumented with an accelerometer, gyroscope, magnetometer, and inertial

positioning system (i.e. vision-based or GNSS) such that position, attitude, and angular velocity measurements can be
readily obtained with negligible noise from a low-level estimation algorithm. Thus, we make the following assumption.

Assumption 3. The aircraft position, attitude, and angular velocity are measured without noise.

Therefore, let
y = x1 := [qT λT ζT ωT]T ∈ Rp (27)

With x = [xT
1 xT

2 ]
T where x2 = [vT

r wT]T ∈ Rn−p, the dynamics are written as

ẋ1 = f1(x1,x2,u) (28a)
ẋ2 = f2(x1,x2,u) (28b)

where f1 contains the right-hand sides of Eqs. (26a)–(26d) and f2 contains the right-hand sides of Eqs. (26e)–(26f).

III. Observer Design via Passivation of Error Dynamics
We use the passivity-based observer described in [16]. The approach involves determining an output injection term

v and a corresponding observer gain matrix L that render the state observation error dynamics strictly passive.
To begin, we recall that a dynamical system ẋ = f(x) + g(x)u with output y = h(x) is dissipative with respect to

the supply rate w(u,y) if there exists a non-negative smooth storage function W (x) such that

W (x(t))−W (x(0)) ≤
∫ t

0

w(u(τ),y(τ)) dτ (29)

The system is considered passive if it is dissipative with respect to the supply rate w(u,y) = uTy. It is strictly passive
if there also exists a positive definite function ϕ such that the system is dissipative with respect to w(u,y) = uTy − ϕ.
Passive systems exhibit many desirable properties. For example, pure negative output feedback of a zero-state detectable,
passive system asymptotically stabilizes the origin. This property among others is described in the seminal work of
[24], where the authors also develop the conditions under which a system can be rendered passive by state feedback.
In [25], these conditions were extended to output feedback passivation. Output feedback passivation was used in the
passivity-based observer design approach described in [15, 16] for systems where only some of the states are available
for feedback.

Here, we review the passivity-based observer design method detailed in [16]. Consider the Luenberger-like observer

˙̂x1 = f1(x̂1, x̂2,u) +L1v(x̂,y,u) (30a)
˙̂x2 = f2(x̂1, x̂2,u) +L2v(x̂,y,u) (30b)

with the nonlinear output injection term

v(x̂,y,u) = −k(x̂,y,u)yp + vp (31)
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where the output error yp = ŷ−y will become the passive output corresponding to the passive input vp – a dummy input
– for the observer dynamics. Note that the observer formulation involves two gains – a constant gain L = [LT1 LT2 ]

T

and scalar gain function k. In Section IV, we will generalize the approach by allowing the scalar gain function, k, to
be a matrix-valued function, K, and allowing the matrix L2 to depend on measurements as in [26–28]. Define the
estimate error as

x̃ := x̂− x (32)

and consider the notation
f̃(x̃;x;u) := f(x̃+ x,u)− f(x,u) (33)

Then, the state estimate error dynamics are

˙̃x1 = f̃1(x̃1, x̃2;x1,x2;u) +L1v(x̂,y,u) (34a)
˙̃x2 = f̃2(x̃1, x̃2;x1,x2;u) +L2v(x̂,y,u) (34b)

The observer design involves two main steps. First, with yp viewed as the output, a proper Lyapunov function
V ∗(x̃2,x) and a positive definite function φ∗ are found that prove the error system in Eq. (34) augmented with the plant
dynamics is globally minimum phase with respect to the manifold

M = {(x̃,x) | x̃ = 0} (35)

with
V̇ ∗ ≤ −φ∗(∥x̃2∥) (36)

This step can be thought of like the first step in integrator backstepping, where one stabilizes a subsystem using a state
variable as an artificial input [29], ensuring the unmeasured state estimates asymptotically approach their true values
when the measurable states are perfectly known. Second, non-negative functions φ1 and φ2 are determined such that∣∣∣∣∂V ∗

∂x̃2
[f̃2 −L2L

−1
1 f̃1](x̃1,L2L

−1
1 x̃1;x1, x̂2;u) + x̃1L

−1
1 f̃1(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

∣∣∣∣
≤ φ1(x̃1,x1, x̂2,u)∥x̃1∥2 + φ2(x̃1,x1, x̂2,u)

√
φ∗(∥x̃2∥)∥x̃1∥ (37)

In this expression, parentheses contain arguments for all functions in square brackets. The requirement that there exist
these bounding functions comes from the sufficient conditions for output feedback passivation developed in [25]. It
essentially ensures the coupling between the output dynamics ( ˙̃x1) and the unmeasurable dynamics ( ˙̃x2) preserves strict
passivity from vp to yp, which is a result of the following.

Theorem 1 (Theorem 2 in [16]). Suppose the Lyapunov function V ∗ proves the error dynamics augmented with the
system dynamics are (globally) minimum phase with respect to M. Also suppose there exist function φ1 and φ2 such
that Eq. (37) holds. Then, the feedback

v = −k(x̂,y)yp + vp (38)

with

k(x̂,y) = ε+ φ1(x̂1 − y,y, x̂2 −L2L
−1
1 (x̂1 − y)) + φ2

2(x̂1 − y,y, x̂2 −L2L
−1
1 (x̂1 − y)), ε > 0 (39)

renders the augmented system strictly passive from vp to yp with respect to M with the storage function

W = V ∗(x̃2 −L2L
−1
1 x̃1,x) +

1

2
x̃T
1L

−1
1 x̃1 (40)

Upon setting vp = 0, M becomes positively invariant and (globally) asymptotically attractive.

While we do not use this theorem directly, the results in this paper follow its proof.
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IV. Passivity-Based Observer Design for Aircraft in Wind

A. Minimum Phase and Relative Degree Sufficient Conditions
Consider the aircraft in wind described compactly by Eq. (28). The state observer takes the form

˙̂x1 = f1(x̂1, x̂2,u) +L1v (41a)
˙̂x2 = f2(x̂1, x̂2,u) +L2(y)v (41b)

The components of the vector field f̃ appearing in the error dynamics, Eq. (34), are

f̃1q = RIB(λ̃+ λ, ζ̃ + ζ)(ṽr + vr)−RIB(λ, ζ)vr + w̃ (42a)

f̃1λ = S(λ̃+ λ)(ω̃ + ω)− S(λ)ω (42b)

f̃1ζ = S(ζ̃ + ζ)(ω̃ + ω)− S(ζ)ω (42c)

f̃1ω = I−1
(
S(Iω̃ + Iω)(ω̃ + ω)− S(Iω)ω +Mvṽr +Mωω̃

)
(42d)

f̃2vr
= S(ṽr + vr)(ω̃ + ω)− S(vr)ω + gζ̃ +

1

m
(Fvṽr + Fωω̃) (42e)

f̃2w = 0 (42f)

With the error dynamics defined, we now aim to design the observer gain matrix L such that the first condition in
Theorem 1 holds, where

L1 = diag
(
L1q ,L1λ ,L1ζ ,L1ω

)
(43a)

L2 =

[
L2vr

L2w

]
=

[
L2v,q L2v,λ

L2v,ζ
L2v,ω

L2w,q
L2w,λ

L2w,ζ
L2w,ω

]
(43b)

That is, we find conditions on L such that a given candidate Lyapunov function proves the error dynamics are minimum
phase. Considering the output injection term in Eq. (38), the zero dynamics of the augmented system composed of
Eqs. (26) and (42) is analyzed in view of the input-output pair {vp,yp}. In general, the zero dynamics of the augmented
system with respect to yp exist in some neighborhood Z ⊆ Rn × Rn about x̃ = 0 [24] and evolve on

Z∗ = {(x̃,x) ∈ Z | x̃1 ≡ 0} (44)

As discussed in [16], the zero dynamics can can be shown to satisfy

˙̃x2 = f̃2(0, x̃2;x1,x2;u)−L2(x1)L
−1
1 f̃1(0, x̃2;x1,x2;u) (45a)

ẋ = f(x,u) (45b)

Therefore, we must choose L such that x̃2 = 0 is asymptotically stable on Z∗. Here, we see that the global existence of
the zero dynamics only requires L1 to be invertible, a condition that also implies the error dynamics have vector relative
degree {1, · · · , 1} [25]. For convenience, denote

ϕ̃2(x̃1, x̃2;x1,x2;u) := f̃2(x̃1, x̃2;x1,x2;u)−L2(x1)L
−1
1 f̃1(x̃1, x̃2;x1,x2;u) (46)

=⇒ ϕ̃∗
2 := ϕ̃2(0, x̃2;x1,x2;u) (47)
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where ϕ̃∗
2 is called the zero dynamics vector field. Referring to (43), we compute ϕ̃2vr

and ϕ̃2w as

ϕ̃2vr
(x̃1, x̃2;x1,x2;u) = S(ṽr + vr)(ω̃ + ω)− S(vr)ω + gζ̃ +

1

m
(Fvṽr + Fωω̃)

−L2v,qL
−1
1q

(
RIB(λ̃+ λ, ζ̃ + ζ)(ṽr + vr)−RIB(λ, ζ)vr + w̃

)
−L2v,λ

L−1
1λ

(
S(λ̃+ λ)(ω̃ + ω)− S(λ)ω

)
−L2v,ζ

L−1
1ζ

(
S(ζ̃ + ζ)(ω̃ + ω)− S(ζ)ω

)
−L2v,ωL

−1
1ω

(
I−1 (S(Iω̃ + Iω)(ω̃ + ω)− S(Iω)ω +Mvṽr +Mωω̃)

)
(48a)

ϕ̃2w(x̃1, x̃2;x1,x2;u) = −L2w,qL
−1
1q

(
RIB(λ̃+ λ, ζ̃ + ζ)(ṽr + vr)−RIB(λ, ζ)vr + w̃

)
−L2w,λ

L−1
1λ

(
S(λ̃+ λ)(ω̃ + ω)− S(λ)ω

)
−L2w,ζ

L−1
1ζ

(
S(ζ̃ + ζ)(ω̃ + ω)− S(ζ)ω

)
−L2w,ωL

−1
1ω

(
I−1 (S(Iω̃ + Iω)(ω̃ + ω)− S(Iω)ω +Mvṽr +Mωω̃)

)
(48b)

The zero dynamics are obtained by simply evaluating Eq. (48) at yp = x̃1 = 0. As a result,

ϕ̃∗
2vr

= −S(ω)ṽr +
1

m
Fvṽr −L2v,ω

L−1
1ω

I−1Mvṽr −L2v,q
L−1

1q
(RIB(λ, ζ)ṽr + w̃) (49a)

ϕ̃∗
2w = −L2w,q

L−1
1q

(RIB(λ, ζ)ṽr + w̃)−L2w,ω
L−1

1ω
I−1Mvṽr (49b)

Consider the zero-error manifold, M, defined in Eq. (35). We aim to find a proper Lyapunov function V ∗(x̃2,x)
that proves M∗ is positively invariant and globally asymptotically attractive on Z∗. That is, we seek V ∗ such that

ψ1(∥x̃2∥) ≤ V ∗(x̃2,x) ≤ ψ2(∥x̃2∥) (50)

V̇ ∗ =
∂V ∗

∂x̃2
ϕ̃∗

2 +
∂V ∗

∂x
f ≤ −φ∗(∥x̃2∥) (51)

where ψ1, ψ2 are class K∞ functions and φ∗ is a smooth, positive definite function. Note that V ∗ does not necessarily
depend on x, but allowing it to do so may admit observer designs for a wider class of systems [16]. By Assumption 2,
we need only consider the candidate Lyapunov function

V ∗(x̃2,x) =
1

2
x̃T
2 x̃2 (52)

which satisfies Eq. (50). It follows that

V̇ ∗ = −ṽT
r S(ω)ṽr + ṽT

r

1

m
Fvṽr − ṽT

r L2v,q
L−1

1q
w̃ − ṽT

r L2v,q
L−1

1q
RIBṽr − ṽT

r L2v,ω
L−1

1ω
I−1Mvṽr

− w̃TL2w,qL
−1
1q

RIBṽr − w̃TL2w,qL
−1
1q

w̃ − w̃TL2w,ωL
−1
1ω

I−1Mvṽr (53)

Here we have dropped the argument to RIB for compactness. From here on, it is implied that RIB = RIB(λ, ζ) unless
explicitly stated. Notice the term ṽT

r S(ω)ṽr is identically equal to zero since the quadratic form of a skew-symmetric
matrix is zero. We may then write Eq. (53) as

V̇ ∗ = −x̃T
2P x̃2 (54)

where

P11 = − 1

m
Fv +L2v,q

L−1
1q

RIB +L2v,ω
L−1

1ω
I−1Mv (55a)

P12 = L2v,q
L−1

1q
(55b)

P21 = L2w,q
L−1

1q
RIB +L2w,ω

L−1
1ω

I−1Mv (55c)

P22 = L2w,qL
−1
1q

(55d)
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Therefore, we choose the gain matrix L such that[
Q11 Q12

QT
12 Q22

]
:= Q :=

1

2

(
P + P T

)
≻ 0

where

Q11 =
1

2

(
− 1

m
(Fv + F T

v ) +L2v,q
L−1

1q
RIB +RT

IBL
−T
1q

LT
2v,q

+L2v,ω
L−1

1ω
I−1Mv +MT

v I
−1L−T

1ω
LT

2v,ω

)
(56a)

Q12 =
1

2

(
L2v,q

L−1
1q

+RT
IBL

−T
1q

LT
2w,q

+MT
v I

−1L−T
1ω

LT
2w,ω

)
(56b)

Q22 =
1

2

(
L2w,q

L−1
1q

+L−T
1q

LT
2w,q

)
(56c)

Choosing L such that Q ≻ 0 is sufficient for proving V̇ ∗ is negative definite. Let

L2v,q
= Γv,qR

T
IBL1q (57a)

L2v,ω
= Γv,ωM

T
v IL1ω (57b)

L2w,q
= RIBΓw,qR

T
IBL1q (57c)

L2w,ω
= RIBΓw,ωM

T
v IL1ω (57d)

where the matrix

Γ =

[
Γv,q Γv,ω

Γw,q Γw,ω

]
(58)

is a constant parameter used for tuning. Notice we have chosen L2 to make the design of L1 independent of the tuning
of the zero dynamics. The matrix Q reduces to

Q11 = − 1

2m

(
Fv + F T

v

)
+

1

2

(
Γv,q + ΓT

v,q

)
+

1

2

(
Γv,ωM

T
v Mv +MT

v MvΓ
T
v,ω

)
(59a)

Q12 =
1

2

(
Γv,q + ΓT

w,q +MT
v MvΓ

T
w,ω

)
RT

IB (59b)

Q22 =
1

2
RIB

(
Γw,q + ΓT

w,q

)
RT

IB (59c)

The rotation matrix, RIB, does not influence the definiteness of Q. This can be seen using the Schur complement where
Q ≻ 0 if and only if

Γw,q + ΓT
w,q ≻ 0 (60a)

Q11 −Q12Q
−1
22 Q

T
12 ≻ 0 (60b)

Therefore, we may choose Γ such that[
− 1
mFv + Γv,q + Γv,ωM

T
v Mv Γv,q

Γw,q + Γw,ωM
T
v Mv Γw,q

]
+

[
− 1
mFv + Γv,q + Γv,ωM

T
v Mv Γv,q

Γw,q + Γw,ωM
T
v Mv Γw,q

]T

≻ 0 (61)

This condition may be stated as the linear matrix inequality (LMI)

ΓA+ATΓT +Q ≻ 0 (62)

where

A =

[
I I

MT
v Mv 0

]
and Q =

[
− 1
m (Fv + F T

v ) 0

0 0

]
(63)

Since V̇ ∗ = −x̃T
2Qx̃2, we choose to lower bound the smallest eigenvalue of Q, denoted λmin(Q), by some positive

constant γ. This constant lower bounds the convergence rate of the zero dynamics. Similarly, we can ensure the observer
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gain is not arbitrarily large by setting an upper bound, γ, on the largest eigenvalue of Q, denoted λmax(Q). This
is important for ensuring the numerical integration of the observer is well-conditioned. Since RIB(λ, ζ) does not
influence the definiteness of Q, we can incorporate the additional convex constraints

λmin(Q̄) ≥ γ (64a)

λmax(Q̄) ≤ γ (64b)

where Q̄ := Q|RIB=I is a constant symmetric matrix. Hence, for some given γ and γ, we have the convex feasibility
problem

Find Γ such that

ΓA+ATΓT +Q ≻ 0

Γw,q + ΓT
w,q ≻ 0

λmin(Q̄) ≥ γ

λmax(Q̄) ≤ γ

(65)

It may be desirable to further constrain the set of solutions to (65). In some cases, the norm of Γ can still be quite large
despite the addition of the bound γ. Accordingly, an additional upper bound can be placed on the norm of Γ.

If γ is upper bounded for the aerodynamic model of interest, (65) can be optimally solved by maximizing γ for some
given γ greater then the maximal γ. As seen in Eq. (59), the upper bound on the zero dynamics convergence rate then
directly depends on the aircraft mass, Fv, and Mv. In other words, the dissipation rate of relative velocity and wind
observation error is dependent on the aircraft’s physical dissipation due to drag. Practically, this means there may be an
upper limit on the time scale of wind fluctuations that can be accurately resolved. Conversely, if γ is lower bounded for
some given γ less than the minimal γ, then it may be minimized to ensure Q is well-conditioned.

While we have arrived at Eq. (62) assuming perfect knowledge of m, Fv, and Mv, we may want to prescribe a
solution that is more robust to uncertainty or changes in these parameters. Suppose the matrices A, Q, and Q̄ are
polytopic uncertain with {

A, Q, Q̄
}
∈ P :=

N∑
i=1

αi
{
Ai, Qi, Q̄i

}
,

N∑
i=1

αi = 1 (66)

Then, we may choose Γ as a solution to the

Find Γ such that

ΓAi +AT
i Γ

T +Qi ≻ 0

Γw,q + ΓT
w,q ≻ 0

λmin(Q̄i) ≥ γ

λmax(Q̄i) ≤ γ

for i = 1, · · · , N (67)

This approach may be used for the case where one chooses to “gain-schedule” the linear aerodynamics matrices based
on the current flight condition. This can be done in principle as long as Fv , Fω , Mv , and Mω vary sufficiently slowly.

With Γ chosen such that (65) holds, we see that

V̇ ∗ = −x̃T
2Qx̃2 ≤ −γ∥x̃2∥2 =: −φ∗(∥x̃2∥) (68)

thus proving the error system is globally minimum phase with respect to yp = ŷ − y.

B. Bounding Functions and Strict Passivity
Having proven that the augmented system is minimum phase, we follow the second step in [16] and consider the

change of coordinates

ξ1 = x̃1 (69a)

ξ2 = x̃2 −L2(y)L
−1
1 x̃1 (69b)

Specifically, the components of ξ2 for the aircraft in wind are

ξ2vr = ṽr − Γv,qR
T
IBq̃ − Γv,ωM

T
v Iω̃ (70a)

ξ2w = w̃ −RIBΓw,qR
T
IBq̃ −RIBΓw,ωM

T
v Iω̃ (70b)
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It follows that
ξ̇2 = ϕ̃2(ξ1, ξ2 +L2L

−1
1 ξ1;x1,x2;u)−

d

dt

(
L2(x1)L

−1
1

)
x̃1 (71)

The only difference here from [16] is the second term. We will see shortly its effect can be incorporated into our choice
of gain function, K. Consider the storage function

W (ξ,x) = V ∗(ξ2,x) +
1

2
ξT1L

−1
1 ξ1 (72)

It can be shown the time derivative of W satisfies

Ẇ =
∂V ∗

∂x
f(x,u) +

∂V ∗

∂ξ2
ϕ̃∗

2(ξ2,x,u) +
∂V ∗

∂ξ2
ϕ̃2(ξ1,L2L

−1
1 ξ1;x1,x2;u)

+ ξT1L
−1
1 f̃1(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u) +

∂V ∗

∂ξ2

d

dt

(
L2(x1)L

−1
1

)
ξ1 + ξT1 v (73)

where the term d
dt

(
L2(x1)L

−1
1

)
for the aircraft in wind is

d

dt

(
L2(x1)L

−1
1

)
=

[
−Γv,qS(ω)RT

IB 0 0 0

RIB (S(ω)Γw,q − Γw,qS(ω))RT
IB 0 0 RIBS(ω)Γw,ωM

T
v I

]
(74)

Then by Eq. (68), we have

Ẇ ≤ −φ∗(∥ξ2∥) +
∂V ∗

∂ξ2
ϕ̃2(ξ1,L2(y)L

−1
1 ξ1;x1, ξ2 + x2;u)

+ ξT1L
−1
1 f̃1(ξ1, ξ2 +L2(y)L

−1
1 ξ1;x1,x2;u)−

∂V ∗

∂ξ2

d

dt

(
L2(y)L

−1
1

)
ξ1 + ξT1 v (75)

Here we see the feedback v can be chosen to render the augmented dynamics strictly passive. Specifically, consider the
following result.

Proposition 1. There exist a symmetric matrix function Ψ : Rp × Rn−p × Rp × U → Rp×p and a matrix function
Λ : Rp × Rn−p × Rp × U → R(n−p)×p such that

∂V ∗

∂ξ2
ϕ̃2(ξ1,L2(y)L

−1
1 ξ1;x1, ξ2 + x2;u) + ξT1L

−1
1 f̃1(ξ1, ξ2 +L2(y)L

−1
1 ξ1;x1,x2;u)

− ∂V ∗

∂ξ2

d

dt

(
L2(y)L

−1
1

)
ξ1 ≤

√
φ∗(∥ξ2∥)∥Λ(ξ1, ξ2 + x2,x1,u)ξ1∥+ ξT1Ψ(ξ1, ξ2 + x2,x1,u)ξ1 (76)

Proof. The proof of Proposition 1 is given in Appendix A.

Using Proposition 1, we write Eq. (75) as

Ẇ ≤ −φ∗(∥ξ2∥) +
√
φ∗(∥ξ2∥)∥Λ(ξ1, ξ2 + x2,x1,u)ξ1∥+ ξT1Ψ(ξ1, ξ2 + x2,x1,u)ξ1 + ξT1 v (77)

Consider the feedback law
v = −K(x̂,y)yp + vp (78)

where
K(x̂,y,u) = εI+

[
Ψ+ΛTΛ

] (
x̂1 − y, x̂2 −L2(y)L

−1
1 (x̂1 − y),y,u

)
(79)

for any ε > 0. Here, parentheses contain arguments for all functions in square brackets. Substituting this feedback law
under the coordinate transformation into Eq. (77), we obtain

Ẇ ≤ yT
pvp − φ∗(∥ξ2∥) +

√
φ∗(∥ξ2∥)∥Λ(ξ1, ξ2 + x2,x1,u)ξ1∥

+ ξT1Ψ(ξ1, ξ2 + x2,x1,u)ξ1 − ξT1
(
εI+

[
Ψ+ΛTΛ

]
(ξ1, ξ2 + x2,x1,u)

)
ξ1 (80)
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After writing Eq. (80) as

Ẇ ≤ yT
pvp − 3

4
φ∗(∥ξ2∥)− εξT1 ξ1

− 1

4
φ∗(∥ξ2∥) +

√
φ∗(∥ξ2∥)∥Λ(ξ1, ξ2 + x2,x1,u)ξ1∥ − ξT1

[
ΛTΛ

]
(ξ1, ξ2 + x2,x1,u)ξ1 (81)

and noticing

−1

4
φ∗(∥ξ2∥) +

√
φ∗(∥ξ2∥)∥Λξ1∥ − ξT1Λ

TΛξ1 = −
(
1

2

√
φ∗(∥ξ2∥)− ∥Λξ1∥

)2

we see that

Ẇ ≤ yT
pvp − 3

4
φ∗(∥ξ2∥)− εξT1 ξ1 −

(
1

2

√
φ∗(∥ξ2∥)− ∥Λξ1∥

)2

(82)

Hence, the storage function

W = V ∗(x̃2 −L2L
−1
1 x̃1,x) +

1

2
x̃T
1L

−1
1 x̃1 (83)

proves the feedback law in Eq. (78) renders the augmented system strictly passive from vp to yp with respect to M.
Upon setting vp = 0, M becomes positively invariant and globally asymptotically attractive [30]. In other words, the
origin of the error system (34) is asymptotically stable. In fact, since L2(y) is bounded, there exist positive constants
κ1, κ2, and κ3 such that κ1∥x̃∥2 ≤ W ≤ κ2∥x̃∥2 and Ẇ ≤ −κ3∥x̃∥2. Specifically, define the constant symmetric
matrices

G1,2 =

[
L−T

1 L̄T
2 L̄2L

−1
1 + (L−1

1 +L−T
1 )/2 L−T

1 L̄T
2

L̄2L
−1
1 I

]
, G3 =

[
3
4γL

−T
1 L̄T

2 L̄2L
−1
1 + εI 3

8γL
−T
1 L̄T

2
3
4γL̄2L

−1
1

3
4γI

]

where
L̄2 := L2|RIB=I

Then, the origin of the error system (34) is globally exponentially stable with trajectories satisfying

∥x̃(t)∥ ≤
√
κ2
κ1

∥x̃(0)∥e−
1
2

κ3
κ2
t (84)

where κ1 = 1
2λmin(G1,2), κ2 = 1

2λmax(G1,2), and κ3 = λmin(G3). These results give an explicit upper bound for
the convergence rate of the state estimate error. Note that this upper bound may be conservative since the contribution
of the last term in Eq. (82) is neglected.

The matrix L1 is left as a tuning parameter that can be chosen using familiar methods of observer gain design by
linearizing about a nominal flight condition and defining weighted objectives (similar to the process and measurement
noise covariance matrices for a Kalman filter). Also note the choice of bounding matrix functions Ψ and Λ given in
Appendix A hold for any finite L2v,λ

, L2v,ζ
, L2w,λ

, L2w,ζ
. However, the observer gain is then also arbitrarily large.

Therefore, it is judicious to choose these gains to make Ψ and Λ as small as possible. Setting L2v,λ
, L2v,ζ

, L2w,λ
, and

L2w,ζ
to be zero matrices is sufficient this task. Intuitively, this is because the attitude kinematics do not explicitly

encode any information about the relative velocity and wind states. They only depend on the measured angular velocity.
Altogether, the matrix L is given as

L =



L1q 0 0 0

0 L1λ 0 0

0 0 L1ζ 0

0 0 0 L1ω

Γv,qR
T
IB(λ, ζ)L1q 0 0 Γv,ωM

T
v IL1ω

RIB(λ, ζ)Γw,qR
T
IB(λ, ζ)L1q 0 0 RIB(λ, ζ)Γw,ωM

T
v IL1ω


(85)
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V. Experimental Demonstration

A. Research Aircraft
The proposed observer was implemented both in simulation and flight test of a small fixed-wing UAS called the My

Twin Dream (MTD), shown in Figure 2. It is a radio-controlled foam aircraft with counter-rotating electric motors and
10 in. diameter, 6 in. pitch (10x6) propellers. The aircraft was instrumented with a Cubepilot Cubeorange flight computer
running PX4 firmware. The sensors onboard the aircraft include triple-redundant accelerometers and gyroscopes, two
magnetometers, a Real-Time Kinematic (RTK) global navigation satellite system (GNSS) receiver, and a vaned air data
unit for validation. The MTD was chosen for its simple construction, propeller location to accommodate the air data
boom, and endurance of approximately 25 minutes. The MTD’s physical properties are listed in Table 1.

Fig. 2 My Twin Dream research aircraft.

Table 1 My Twin Dream properties.

Property Symbol Value Units
Mass m 3.311 kg
Mean aerodynamic chord c̄ 0.254 m
Projected wing span b 1.800 m
Wing planform area S 0.457 m2

Roll moment of inertia Ixx 0.319 kg-m2

Pitch moment of inertia Iyy 0.267 kg-m2

Yaw moment of inertia Izz 0.471 kg-m2

Product of inertia Ixz 0.024 kg-m2

Product of inertia Ixy, Iyz ≈ 0 kg-m2

A nonlinear aero-propulsive model for the MTD was identified from flight data using the methods detailed
in [31–33]. For brevity, only a short overview of the system identification process is presented here. See [31–33] and
references therein for representative details. Flight data was collected for the MTD in calm conditions using orthogonal
phase-optimized multisine inputs [34] and was processed according to [31, 33]. Next, multivariate orthogonal function
modeling [35] was used to determine the model structure with the minimum predicted squared error. The resulting
non-dimensional force and moment coefficient models are

Cx = Cxαα+ Cxq

qc̄

2V
+ Cxα2α

2 + CxJc
Jc + Cx0 (86a)

Cy = Cyββ + Cyr
rb

2V
+ Cyδaδa+ Cyδrδr (86b)

Cz = Czαα+ Czq
qc̄

2V
+ Czδeδe+ Cz0 (86c)

Cl = Clββ + Clp
pb

2V
+ Clδaδa (86d)

Cm = Cmαα+ Cmq

qc̄

2V
+ Cmδe

δe+ Cmα3α
3 + Cm0 (86e)

Cn = Cnβ
β + Cnr

rb

2V
+ Cnδa

δa+ Cnδr
δr (86f)

Here, Jc = J − J0 where J = ΩD/V is the inverse advance ratio [32], J0 is its nominal value, Ω is the propeller
speed in rad/s, and D is the propeller diameter. Next, maximum likelihood parameter estimates were obtained using
the output error method [34] in Matlab using the System IDentification Programs for AirCraft (SIDPAC) software
toolbox [36]. The final model structure is given in Appendix B. The model parameter estimates are shown in Table 3
and the valid model domain is given in Table 4. Figure 10 shows state prediction results obtained by integrating the final
model with input data that were used in obtaining the model.

14



B. Wind Reconstruction
The wind estimates were compared to reconstructed wind data from a vaned air data unit (ADU) mounted out the

nose of the aircraft as pictured in Figure 2. This sensor was developed, manufactured, and calibrated by the Nonlinear
Systems Laboratory at Virginia Tech [37]. It consists of two 3D printed vanes attached to magnetic rotary encoders
and a 3D printed Kiel probe connected to a MS5525DSO commercial off-the-shelf digital pressure sensor. The PWM
rotary encoders are read at a sample rate of 200 Hz by a microcontroller that communicates with the autopilot over the
CAN bus via a custom PX4 driver. The pressure sensor is natively supported by PX4 and configured to log calibrated
airspeed data at 10 Hz.

Let V , α, and βf be the airspeed, angle-of-attack, and flank angle reported by the ADU, respectively. By using GPS
velocity measurements vi (accuracy of 0.05 m/s), autopilot attitude estimates (quaternion estimate standard deviations
on the order of 10−3), and angular velocity measurements from the calibrated gyroscope (noise and bias removed), the
wind velocity may be reconstructed as

w = vi −RIB (vADU − ω × rADU) (87)

where
vADU = RBW(α, β)e1V

where vADU is the air-relative velocity at the geometric center of the ADU vanes, whose position in the body frame is
denoted rADU. The rotation matrixRBW(α, β) = e−S(e2)αeS(e3)β , which maps free vectors from the wind frame to the
body frame, is parameterized by the measured angle-of-attack, α, and the sideslip angle, β = tan−1(tan(βf ) cos(α)).
The accuracy of the reconstructed wind data can be characterized by propagating the measurement uncertainty through
Eq. (87).

C. Simulation
First, the proposed observer was implemented in simulation with all assumptions satisfied in order to demonstrate

the theoretical convergence guarantees. That is, the model is perfectly known, there is no measurement noise, and
the wind is constant. The nonlinear system with linearized aerodynamics (Eq. (26)) was simulated in a uniform wind
field with components WN = 10 m/s, WE = −15 m/s, and WD = −3 m/s using Matlab. The aircraft was given
large-amplitude open loop controls resulting in the trajectory shown in Figure 3. The nonlinear passivity-based observer

Fig. 3 Simulated aircraft trajectory in wind.

was implemented on this data. The set of LMIs in (65) were solved using CVX [38, 39] with the Mosek solver [40]. The
lower bound γ was maximized for a fixed upper bound of γ = 5, resulting in an optimal value of γ = 0.27. The time
history of wind estimate results are shown in Figure 4. The storage function, W , was also plotted for the simulation data
and is shown in Figure 5. Here, we see W is strictly decreasing in time – consistent with Eq. (82).

D. Flight Test
Next, the proposed observer was implemented on flight test data for the MTD. These data were collected as part of a

flight test campaign at Virginia Tech’s Kentland Experimental Aerial Systems (KEAS) airfield on September 28th, 2022.
The wind conditions were moderately turbulent for the aircraft’s size (varying between 3 and 12 m/s) with a mean wind
speed of 7.5 m/s coming from the northwest.
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Fig. 4 Simulated wind estimates.
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Fig. 5 Storage function.

Data were gathered in a grid pattern for two flights – one at 400 ft and the other at 700 ft above ground level (AGL).
Since we are interested in maneuvering flight, nine maneuvers were selected in which the aircraft sharply executed a
banked turn resulting in a heading change of 180 degrees.

The robust feasibility problem (67) was solved over the valid range of state and input values for the aerodynamic
model (Table 4). The upper bound γ was fixed at 5, while the lower bound γ was maximized to yield an optimal value
of 0.056. An additional constraint was placed such that the norm of Γ was less than 20 in order to maintain efficient and
accurate numerical integration of the observer. The injection gain of the measured states, L1, was found by linearizing
the aircraft dynamics about the nominal cruise flight condition, {x0,u0}, for the MTD and solving the algebraic Riccati
equation, AP + PAT − PCTR−1

c CP +Qc = 0. Here, A = ∂f/∂x|x0,u0
and C = [I 0]

T. Using historical data
collected for the MTD, the Qc and Rc matrices were selected as typically done for a Kalman-Bucy filter. That is,
Qc was selected as the maximum power spectral density of the difference between the modeled and measured state
derivatives over the frequency range of interest. The matrix Rc was chosen to be a time-averaged state estimate error
covariance of y = x1 from the autopilot’s extended Kalman filter. The block-diagonal elements of the resulting gain
matrix, PCTR−1

c , were checked for invertibility and then selected to be the respective block-diagonal elements of L1.
The initial conditions of the measured states, x̂1(0) were set to their initial measured values, y(0). The initial condition
for the relative velocity, v̂r(0) was set to be the aircraft’s nominal trim value in calm air, while the initial wind estimate,
ŵ was set to zero.

The passivity-based observer was implemented on all nine turn maneuvers with the same tuning parameters. The
root-mean-squared error, RMSE(x) = ( 1

N

∑N
k=1(x̂(tk)− x(tk))

2)1/2, of the wind components were computed for
each 40 second maneuver, as tabulated in Table 2. The typical RMSE value is less than 1 m/s. The RMSE for the
vertical component is typically smaller than for the horizontal components, due to a fixed-wing aircraft’s inherent
sensitivity to vertical velocity fluctuations.

As an example, the passivity-based observer results for Maneuver 9 are considered. The trajectory that the aircraft
follows during this maneuver is shown in Figure 6. The time histories of the apparent wind estimates are shown in
Figure 7 along with the “truth values” reconstructed according to Section V.B. Examining Figure 7, the wind estimates
appear to converge within an ultimate bound around the true values. Suppose we consider the modeling error as a
disturbance to the error system, on which we can place some upper bound. Then since the state estimate error is globally
asymptotically stable for the ideal system, there exists some neighborhood about the origin for which the error system is
locally input-to-state stable with respect to these disturbances [41, Ch. 5]. The norms of the matrix-valued bounding
functions, Ψ and Λ, are also plotted in Figure 8. Recall, the function Ψ bounds the nonlinear growth of of x̃1, which is
typically smaller than that of x̃2 (bounded by Λ).

The variation in convergence among the set of maneuvers was also analyzed. Point-wise in time, the sample mean
and standard deviations were computed across the set of wind estimate error trajectories. Time histories for the first one
second of these data are shown in Figure 9, where we see consistent convergence towards some ultimate bound about
zero error.
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Table 2 Flight test maneuvers.

Maneuver Flight Number RMSE(wN ) [m/s] RMSE(wE) [m/s] RMSE(wD) [m/s]
1 1 0.97 0.58 0.59
2 1 0.83 0.70 0.68
3 1 0.86 0.76 0.69
4 1 0.74 0.55 0.56
5 1 0.75 0.75 0.56
6 2 1.06 0.68 0.41
7 2 1.11 0.81 0.46
8 2 0.84 0.93 0.70
9 2 1.32 1.04 0.63

Fig. 6 Trajectory of maneuver 9 (aircraft not to scale).
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Fig. 7 Wind estimates for maneuver 9.

VI. Conclusions and Future Work
The design and experimental demonstration of a global nonlinear passivity-based wind observer for aircraft was

presented. Under some mild assumptions about the wind field and aircraft’s aerodynamics, we obtain rigorous guarantees
on the convergence of wind estimates across the entire flight envelope. Such strong results help expand the range
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Fig. 9 Variation in wind estimate error transients.

of flight conditions for which accurate wind estimates can be made. Through a judicious choice of the output error
injection gain matrix (specifically, the component denoted L2 in the narrative), linear matrix inequality conditions were
obtained that not only prove the observer error dynamics are globally minimum phase, but also provide a constructive
design procedure. Explicit formulas were derived for the bounding functions that define the matrix-valued output error
scaling (denoted K in the narrative), allowing the observer to be implemented on flight data. The result of this paper
is generally applicable to a wide variety of aircraft, providing a powerful capability to estimate wind with rigorous
guarantees even in adverse conditions. Future work involves relaxing the assumption of linear aerodynamics, as well as
analyzing the effect of aircraft and wind modeling error on stability of the observer.
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A. Proof of Proposition 1
We start by expanding

∂V ∗

∂x̃2
ϕ̃2(x̃1,L2(y)L

−1
1 x̃1;x1, x̃2 + x2;u)−

∂V ∗

∂x̃2

d

dt

(
L2(y)L

−1
1

)
x̃1

+ x̃T
1L

−1
1 f̃1(x̃1, x̃2 +L2(y)L

−1
1 x̃1;x1,x2;u) (A.1)

and replacing x2 with x̂2 − x̃2 to yield

− x̃T
2

d

dt

(
L2(y)L

−1
1

)
x̃1 + ṽT

r ϕ̃2vr
(x̃1,L2L

−1
1 x̃1;x1, x̂2;u) + w̃Tϕ̃2w(x̃1,L2L

−1
1 x̃1;x1, x̂2;u)

+ q̃TL−1
1q

f̃1q (x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) + λ̃TL−1

1λ
f̃1λ(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

+ ζ̃TL−1
1ζ

f̃1ζ (x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) + ω̃TL−1

1ω
f̃1ω (x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u) (A.2)

With L2 given in Eq. (57), let us rewrite the components of ϕ̃2 from Eq. (48) as

ϕ̃2vr
(x̃1, x̃2;x1,x2;u) = S(vr)ω̃ − S(ω̃ + ω)ṽr + gζ̃ +

1

m
Fvṽr +

1

m
Fωω̃

− Γv,qR
T
IB(λ, ζ)

(
RIB(λ̃+ λ, ζ̃ + ζ)ṽr +

(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
vr + w̃

)
− Γv,ωM

T
v

(
S(I(ω̃ + ω))ω̃ − S(ω)Iω̃ +Mvṽr +Mωω̃

)
(A.3a)

ϕ̃2w(x̃1, x̃2;x1,x2;u) = −RIB(λ, ζ)Γw,qR
T
IB(λ, ζ)

(
RIB(λ̃+ λ, ζ̃ + ζ)ṽr

+
(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
vr + w̃

)
−RIB(λ, ζ)Γw,ωM

T
v

(
S(I(ω̃ + ω))ω̃

− S(ω)Iω̃ +Mvṽr +Mωω̃
)

(A.3b)

Using

L2L
−1
1 x̃1 =

[
L2v,q

L−1
1q

q̃ +L2v,ω
L−1

1ω
ω̃

L2w,q
L−1

1q
q̃ +L2w,ω

L−1
1ω

ω̃

]
=

[
Γv,qR

T
IB(λ, ζ)q̃ + Γv,ωM

T
v Iω̃

RIB(λ, ζ)Γw,qR
T
IB(λ, ζ)q̃ +RIB(λ, ζ)Γw,ωM

T
v Iω̃

]
(A.4)

and the expressions for ϕ̃2 in Eq. (A.3), we compute the necessary terms in Eq. (A.2) as

ϕ̃2vr
(x̃1,L2L

−1
1 x̃1;x1, x̂2;u) =

(( 1

m
Fv − S(ω̃ + ω)

)
Γv,q − Γv,qR

T
IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,q − Γv,qΓw,q

− Γv,ωM
T
v MvΓv,q

)
RT

IB(λ, ζ)q̃ + gζ̃ +

(( 1

m
Fv − S(ω̃ + ω)

)
Γv,ωM

T
v I

+
1

m
Fω + S(v̂r)− Γv,q

(
RT

IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,ω + Γw,ω

)
MT

v I

− Γv,ωM
T
v

(
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I

))
ω̃

− Γv,qR
T
IB(λ, ζ)

(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
v̂r (A.5a)
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ϕ̃2w(x̃1,L2L
−1
1 x̃1;x1, x̂2;u) = RIB(λ, ζ)

(
− Γw,q

(
RT

IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,q + Γw,q

)
− Γw,ωM

T
v MvΓv,q

)
RT

IB(λ, ζ)q̃

+RIB(λ, ζ)

(
− Γw,q

(
RT

IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,ω + Γw,ω

)
MT

v I

− Γw,ωM
T
v

(
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I

))
ω̃

−RIB(λ, ζ)Γw,qR
T
IB(λ, ζ)

(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
v̂r (A.5b)

f̃1q (x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) =

(
RIB(λ, ζ)Γw,qR

T
IB(λ, ζ) +RIB(λ̃+ λ, ζ̃ + ζ)Γv,qR

T
IB(λ, ζ)

)
q̃

+

(
RIB(λ, ζ)Γw,ω +RIB(λ̃+ λ, ζ̃ + ζ)Γv,ω

)
MT

v Iω̃ + w̃

+RIB(λ, ζ)ṽr +
(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
v̂r (A.5c)

f̃1λ(x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) = S(λ̃+ λ)ω̃ − S(ω)λ̃ (A.5d)

f̃1ζ (x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) = S(ζ̃ + ζ)ω̃ − S(ω)ζ̃ (A.5e)

f̃1ω (x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) = I−1MvΓv,qR

T
IB(λ, ζ)q̃ + I−1Mvṽr

+ I−1
(
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I

)
ω̃ (A.5f)
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These expressions in Eq. (A.5) are then substituted into Eq. (A.2) along with the expression for d
dt (L2(y)L

−1
1 ) from

Eq. (74) to yield

ṽT
r Γv,qS(ω)RT

IBq̃ − w̃TRIB (S(ω)Γw,q − Γw,qS(ω))RT
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T
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)
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+ ṽT
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(
RT
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))
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(
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v
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RIB(λ, ζ)ṽr + q̃TL−1
1q

w̃ + q̃TL−1
1q

(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
v̂r

+ λ̃TL−1
1λ

S(λ̃+ λ)ω̃ − λ̃TL−1
1λ

S(ω)λ̃+ ζ̃TL−1
1ζ

S(ζ̃ + ζ)ω̃ − ζ̃TL−1
1ζ

S(ω)ζ̃ + ω̃TL−1
1ω

I−1Mvṽr
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Here we have color-coded terms by those that can be written as x̃T
1 (•)x̃1 and those that can be written as x̃T

2 (•)x̃1. The
terms in violet are not immediately seen to follow either of these two forms. However, consider the common term(

RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)
)
v̂r (A.7)

with each element of the vector result given by[(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
v̂r

]
1
= λ̃1ûr + λ̃2v̂r + λ̃3ŵr (A.8a)[(
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]
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+ (ζ̃1λ̃2 + ζ̃1λ2 + ζ1λ̃2 − ζ̃2λ̃1 − ζ̃2λ1 − ζ2λ̃1)ŵr (A.8b)[(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
v̂r

]
3
= ζ̃1ûr + ζ̃2v̂r + ζ̃3ŵr (A.8c)
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It is apparent the first and third elements can be written in the form (•)λ̃+ (•)ζ̃. The second element may be written as[(
RIB(λ̃+ λ, ζ̃ + ζ)−RIB(λ, ζ)

)
v̂r

]
2
=

(
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Therefore, (
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where
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Note that these choices of Mλ and Mζ are non-unique. Turning back to Eq. (A.6), we have
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ṽT
r

(( 1

m
Fv − S(ω̃ + ω)

)
Γv,q − Γv,qR

T
IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,q − Γv,qΓw,q − Γv,ωM

T
v MvΓv,q

)
RT

IB(λ, ζ)q̃

+ ṽT
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Let the p× p matrix-valued function A be defined as

A(x̃1,x1, x̂2) =


Aq,q Aq,λ Aq,ζ Aq,ω

0 Aλ,λ Aλ,ζ Aλ,ω

0 0 Aζ,ζ Aζ,ω

0 0 0 Aω,ω

 (A.13)
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−1L−T
1ω

Aλ,λ = −L−1
1λ

S(ω)

Aλ,ζ = 0

Aλ,ω = L−1
1λ

S(λ̃+ λ)

Aζ,ζ = −L−1
1ζ

S(ω)

Aζ,ω = L−1
1ζ

S(ζ̃ + ζ)

Aω,ω = L−1
1ω

I−1
(
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I

)
Also, define the (n− p)× p matrix-valued function B as

B(x̃1,x1, x̂2) =

[
Bvr,q Bvr,λ Bvr,ζ Bvr,ω

Bw,q Bw,λ Bw,ζ Bw,ω

]
(A.14)

where

Bvr,q =

(
Γv,qS(ω) +

( 1

m
Fv − S(ω̃ + ω)− Γv,qR

T
IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)− Γv,ωM

T
v Mv

)
Γv,q

− Γv,qΓw,q

)
RT

IB(λ, ζ) +RT
IB(λ, ζ)L

−T
1q

Bvr,λ = −Γv,qR
T
IB(λ, ζ)Mλ(λ̃, ζ̃, v̂r)

Bvr,ζ = gI− Γv,qR
T
IB(λ, ζ)Mζ(λ̃, ζ̃, v̂r)

Bvr,ω =
( 1

m
Fv − S(ω̃ + ω)

)
Γv,ωM

T
v I − Γv,q

(
RT

IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,ω + Γw,ω

)
MT

v I +
1

m
Fω + S(v̂r)

− Γv,ωM
T
v

(
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I

)
+MT

v I
−1L−T

1ω

Bw,q = RIB(λ, ζ)

(
Γw,qS(ω)− S(ω)Γw,q − Γw,ωM

T
v MvΓv,q

− Γw,q

(
RT

IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,q + Γw,q

))
RT

IB(λ, ζ) +L−T
1q

Bw,λ = −RIB(λ, ζ)Γw,qR
T
IB(λ, ζ)Mλ(λ̃, ζ̃, v̂r)

Bw,ζ = −RIB(λ, ζ)Γw,qR
T
IB(λ, ζ)Mζ(λ̃, ζ̃, v̂r)

Bw,ω = RIB(λ, ζ)

(
− S(ω)Γw,ωM

T
v I − Γw,q

(
RT

IB(λ, ζ)RIB(λ̃+ λ, ζ̃ + ζ)Γv,ω + Γw,ω

)
MT

v I

− Γw,ωM
T
v

(
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I

))
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Therefore, the expression in Eq. (A.12) can be written as

x̃T
2B(x̃1,x1, x̂2)x̃1 + x̃T

1A(x̃1,x1, x̂2)x̃1

Let

Λ =

√
1

γ
B and Ψ =

1

2

(
A+AT

)
(A.15)

Using a series of sub-multiplicative properties, and the definition of φ∗ in Eq. (68), we have

x̃T
2B(x̃1,x1, x̂2)x̃1 + x̃T

1A(x̃1,x1, x̂2)x̃1 ≤
∣∣x̃T

2B(x̃1,x1, x̂2)x̃1

∣∣+ x̃T
1A(x̃1,x1, x̂2)x̃1 (A.16a)

=
∣∣x̃T

2

√
γΛ(x̃1,x1, x̂2)x̃1

∣∣+ x̃T
1Ψ(x̃1,x1, x̂2)x̃1 (A.16b)

≤ √
γ∥x̃2∥∥Λ(x̃1,x1, x̂2)x̃1∥+ x̃T

1Ψ(x̃1,x1, x̂2)x̃1 (A.16c)

=
√
φ∗(x̃2) ∥Λ(x̃1,x1, x̂2)x̃1∥+ x̃T

1Ψ(x̃1,x1, x̂2)x̃1 (A.16d)

thereby proving Proposition 1.

B. System Identification Results

Table 3 Maximum likelihood parameter estimates

Parameter Estimate Standard Deviation
Cxα −3.07× 10−1 4.45× 10−3

Cxq
2.54 4.06× 10−2

Cxα2 3.55 3.73× 10−2

CxJc
9.45× 10−2 5.33× 10−4

Cx0
1.03× 10−2 1.87× 10−4

Cyβ −4.62× 10−1 3.04× 10−3

Cyr 5.37× 10−1 6.86× 10−3

Cyδa 5.95× 10−2 1.02× 10−3

Cyδr −1.54× 10−1 2.15× 10−3

Czα −4.95 2.29× 10−2

Czq −8.80 1.45× 10−1

Czδe 7.90× 10−2 1.47× 10−3

Cz0 1.32× 10−1 1.90× 10−3

Clβ −9.21× 10−3 1.49× 10−4

Clp −3.97× 10−1 3.12× 10−3

Clδa −1.16× 10−1 8.04× 10−4

Cmα
−4.27× 10−1 4.08× 10−3

Cmq
−4.88 6.11× 10−2

Cmδe
2.66× 10−1 1.69× 10−3

Cmα3 −2.16 4.53× 10−2

Cm0
4.17× 10−2 3.92× 10−4

Cnβ
7.78× 10−2 4.32× 10−4

Cnr
−1.61× 10−1 1.63× 10−3

Cnδa
1.61× 10−2 2.57× 10−4

Cnδr
5.51× 10−2 4.72× 10−4
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Table 4 Aerodynamic model valid domain (taken to capture 95% of data)

Variable Minimum Mean Maximum Units
V 13.9 18.7 23.4 m/s
α 1.43 6.08 10.72 deg
β -8.89 2.83 14.54 deg
p -90.0 7.9 105.8 deg/s
q -44.5 9.2 62.9 deg/s
r -67.6 -0.03 67.5 deg/s
δa -16.7 -1.2 14.3 deg
δe -12.2 1.9 16.1 deg
δr -13.0 -0.1 12.9 deg
Ω 196.7 212.6 228.5 rad/s
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Fig. 10 Output error method model prediction.
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