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Inferring wind velocity from aircraft motion is an enabling technology with applications
in synthetic air data systems, path planning, safety monitoring, and atmospheric research.
This paper presents a novel nonlinear observer for wind estimation, leveraging the symmetry
of aircraft dynamics under the action of a Lie group to achieve global exponential stability
guarantees. By only estimating the unmeasured wind and air-relative velocity, the reduced-order
observer reduces computational complexity and simplifies nonlinear stability analysis. This
approach eliminates the need for a small-perturbation assumption, reformulating the nonlinear
wind estimation problem into the design of a linear, time-varying observer. Simulations with
a nonlinear multirotor aircraft model demonstrate the observer’s robustness to turbulence
and measurement noise, highlighting its practical applicability and potential to ensure safe
operation of future aircraft systems.

I. Introduction

Inferring wind velocity from aircraft motion is an enabling technology across a wide range of applications. In
aeronautics, wind estimates can be used in synthetic air data systems [1, 2] and path planning algorithms [3, 4].

Furthermore, with the accuracy of wind estimates quantified [5] and/or their convergence guaranteed [6], wind estimation
algorithms can be incorporated into safety monitoring systems, such as [7] and [8], to replace traditional measurement
techniques. Closely tied to aviation, wind estimates are also vital to weather prediction and atmospheric science [9–12].
These areas of application have become intertwined, especially within the poorly sampled atmospheric boundary layer,
with advances in the Urban/Advanced Air Mobility (UAM/AAM) mission [13, 14]. For example, the development
of wind estimation technologies is important in relaxing margins for flight safety to enable more weather-tolerant
operations [15, 16].

The development of model-based wind estimation algorithms has brought finer temporal resolution and greater
accuracy to wind velocity estimates [6, 17–19]. These indirect approaches feature a low instrumentation barrier as they
do not require specialized sensors, such as an anemometer, to measure wind velocity. Instead, a model of the aircraft
dynamics is used in conjunction with standard navigational sensors (e.g., accelerometer, gyroscope, magnetometer, and
GNSS) to continuously estimate wind velocity at the aircraft’s location.

The accuracy and stability guarantees of wind estimation approaches generally fall to the severity of approximations
and assumptions made. Most common is the small-perturbation assumption that allows a linear flight dynamic model to
be used with a linear state estimation scheme (e.g., the Kalman filter or H∞ filter). Even approximate nonlinear filter
techniques such as the extended Kalman filter (EKF) only retain their formal guarantees for small perturbations about
steady motion with sufficiently low noise [20]. For model-based wind estimation, nonlinear approaches that relax the
small perturbation assumption are limited, but there have been some promising developments such as the nonlinear,
passivity-based observer detailed in [6]. This approach uses the nonlinear aircraft dynamics in a passivity-based
approach [21] to construct an extended state observer that is globally exponentially stable provided the aerodynamics
are not highly nonlinear (e.g., stall). Another approach to overcome the limitations of linear wind estimation is the
invariant extended Kalman filter [22, 23]. The invariant EKF is a type of local symmetry-preserving observer [24]
which aims to expand the set of trajectories for which local stability is verified. These so-called permanent trajectories
are a generalization of steady motions for which convergence is guaranteed.

Typical approaches to model-based wind estimation produce estimates of not only wind and air-relative velocity,
but also known signals such as position, attitude, and angular velocity [25]. In many cases, there is no practical use
in re-estimating this measured part of the aircraft’s state using these full-order observers and estimators. As a result,
reduced-order observers are of great interest in which only the unmeasured part of the state is estimated. This approach
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can decrease computational complexity and simplify the observer design process. Furthermore, aircraft dynamics
possess symmetries; that is, they are invariant under rotations and translations (e.g., the standard orientation of the
body frame with respect to the physical airframe corresponds to just one of many valid coordinate representations).
In fact, the presence of this symmetry can be exploited in the observer design to simplify convergence analysis and
gain selection. Motivated by these observations, a symmetry-preserving, reduced-order observer was developed by the
authors in [26], which we use here to solve the wind estimation problem.

This paper is organized as follows. Section II presents the aircraft dynamics and their invariance under rotations.
Next, Section III details the design of symmetry-preserving reduced-order observers for the aircraft in wind using the
theory developed in [26]. Finally, these observers are demonstrated on simulated flight data for a multirotor aircraft in
Section IV, followed by concluding remarks in Section V.

II. Invariant Aircraft Dynamics in Wind

A. Rigid-Body Kinematics on TSE(3)
Consider an aircraft, modeled as a rigid body of mass m. Let the orthonormal vectors {i1, i2, i3} define an

earth-fixed North-East-Down (NED) reference frame, FI, which we take to be inertial over the time and space scales
of vehicle motion. Let the orthonormal vectors {b1, b2, b3} define the body-fixed frame, FB, centered at the aircraft
center of gravity (CG) with b1 out the front of the aircraft, b2 out the right-hand side, and b3 out the bottom completing
the right-handed frame. The position of the body frame with respect to the inertial frame is given by the vector
q = [x y z]T ∈ R3. The attitude of the aircraft is described by the rotation matrix RIB ∈ SO(3) that maps free
vectors from FB to FI. The aircraft’s configuration is described by points (q,RIB) in the special Euclidean group,
SE(3) = R3 ⋊ SO(3), where ⋊ is the semi-direct product which expresses how two elements of the group compose a
new element. [27, §9.6]. Let v = [u v w]T and ω = [p q r]T be the translational and rotational velocity of the aircraft
with respect to FI expressed in FB, respectively. The kinematic equations of motion are

q̇ = RIBv (1a)

ṘIB = RIBS(ω) (1b)

where S(·) is the skew-symmetric cross product equivalent matrix satisfying S(a)b = a× b for 3-vectors a and b.
Similarly, S−1(·) gives the vector whose cross product equivalent matrix is (·); that is, S−1(S(a)) = a. Geometrically,
these kinematics are defined on the tangent bundle TSE(3) =

⋃
p∈SE(3) TpSE(3), where TpSE(3) denotes the tangent

space to SE(3) at the point p.

B. Dynamics in Steady and Uniform Wind
Since the aim is to estimate wind velocity, we now consider the aircraft dynamics in a time-varying wind field,

W : R3 × R → R3, defined in the inertial frame. Let the instantaneous wind vector as experienced by the aircraft be

w(t) =W (q(t), t) (2)

The apparent wind w is taken to be part of aircraft’s extended state. The apparent wind along with the aircraft body
velocity, v, define the air-relative velocity in the body frame, vr, via the wind triangle

vr = v −RT
IBw (3)

For the purpose of the observer design, we assume the following.

Assumption 1. The wind field is uniform and steady on the space and time scales considered. In other words, ẇ = 0.

In this case, the translational dynamics, in terms of air-relative velocity, are

v̇r = vr × ω +RT
IBg +

1

m
F (4)

where F is the body-frame aerodynamic force and g is the gravitational acceleration vector. Letting I be the body-frame
moment of inertia matrix about the center of mass andM be the aerodynamic moment in the body frame, the rotational
dynamics are

ω̇ = I−1 (Iω × ω +M) (5)
To simplify the observer design, we make the following assumption on the aircraft’s aerodynamics.
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Assumption 2. The aircraft’s aerodynamic force and moment satisfy

F = F0 + Fvvr + Fωω (6)
M =M0 +Mvvr +Mωω (7)

where F(·) andM(·) are known “inputs” that vary the aircraft state and control.

This assumption might seem restrictive. However, using the force model as an example, we often consider smooth,
nonlinear, quasi-steady aerodynamic models

F (vr,ω, δ) = F0(vr,ω, δ) + Fv(vr,ω, δ)vr + Fω(vr,ω, δ)ω (8)

where δ is the vector of flight control inputs (e.g., throttle setting and control surface deflections). Then assuming the
estimates of vr and ω converge much faster than F(·) are changing over time, Eq. (6) can be obtained by setting the
arguments of F(·) in Eq. (8) to their best estimates at the current time. Consequences of this assumption will be explored
in Section IV.

Altogether, the aircraft equations of motion used for the observer design are

q̇ = RIBvr +w (9a)

ṘIB = RIBS(ω) (9b)
ω̇ = I−1 (Iω × ω +M0 +Mvvr +Mωω) (9c)

v̇r = vr × ω +RT
IBg +

1

m
(F0 + Fvvr + Fωω) (9d)

ẇ = 0 (9e)

Assumption 3. The aircraft’s position (q), attitude (RIB), and angular velocity (ω) are obtained with negligible error.

Thus, we take y = (q,RIB,ω) ∈ Y = SE(3)× R3 to be the measured part of the state and x = (vr,w) ∈ X = Rn

to be the unmeasured part. Here, the dimension of Y is p = 9 (SE(3) is a 6-dimensional smooth manifold), and the
dimension of X is n = 6. The total state space of the system is the (n+ p = 15)-dimensional manifold X × Y . We
will use the notation (a, b) as shorthand for [aT bT]T if a and b are column vectors. More generally, (a, b) denotes a
point in the appropriate product space in which a and b belong. With these definitions, the aircraft dynamics (9) are
written as

ẋ = f(x,y,u) (10a)
ẏ = h(x,y,u) (10b)

where u is the known “input” to the system. Here, the input vector u is not necessarily flight control inputs as in the
vector delta above; rather it is a collection of known quantities on which a particular transformation group acts. In
this case, it is composed of all quantities, other than the system state, that are expressed in either FB or FI. That is,
u = (g, I,M0,Mv,Mω,F0,Fv,Fω) ∈ U . The vector field (f ,h) in Eq. (10) is appropriately constructed from the
right-hand side of Eq. (9).

C. Invariance of the Aircraft Dynamics
In order to design a symmetry-preserving observer for the aircraft in wind, we must determine what transformations

of the aircraft state and input leave the dynamics (9) unchanged – that is, invariant. To this end, consider the following
preliminaries.

1. Mathematical Preliminaries
A Lie group G is said to act on a manifold X via the mapping

φ : G×X → X , (g,x) 7→ φg(x) (11)

if (i) the identity element e in G induces the identity transformation φe(x) = x for all x ∈ X , and (ii) the composition
of group actions satisfies φg ◦ φh = φg∗h, where “◦” denotes the composition of mappings and “∗” is group
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multiplication [28, 29]. Note the inverse transformation φ−1
g is given by the action of the inverse group element – i.e.,

φ−1
g = φg−1 . With these properties, the collection {φg}g∈G is called a transformation group.

As explained in [24, 28], a dynamical control system

ẋ = f(x,u) (12)

is called G-invariant with respect to the transformation group {φg,ψg}g∈G if

f(φg(x),ψg(u)) = Tφg(x) · f(x,u) (13)

where Tφg(x) : TxX → Tφg(x)X denotes the tangent map of φg at x and “·” denotes its application to a tangent
vector. Note if X = Rn, then Tφg(x) is simply the Jacobian matrix, ∂φg(x)/∂x.

2. SO(3)-Invariance of the Aircraft Dynamics in Wind
For the reduced-order observer problem, the aim is to find a transformation group {φg,ϱg,ψg}g∈G for the

system (10), where φg acts on the unmeasured part of state, ϱg acts on the measured part, and ψg acts on the input.
Recall Lie groups sets of elements that act on each other through group multiplication, but also topological spaces that
correspond (locally) to Euclidean space. As described in Section II.A, the configuration the rigid-body aircraft is a point
on such a manifold – the special Euclidean group SE(3). Therefore, SE(3) is a natural choice of Lie group G for which
a transformation group is defined (like in [22, 23]). However, since position does not explicitly appear on the right-hand
side of Eq. 9, choosing G = SO(3) to define the transformation group is sufficient for the construction of an observer.

Furthermore, we recognize the aircraft dynamics are invariant under not just a single transformation group, but
rather a family of transformation groups. The two most natural choices from this family are given as follows.

Proposition 1. The aircraft dynamics (9) are SO(3)-invariant under the transformation groups

φg(x) =

(
vr

Rgw

)
=:

(
φvr

g (x)

φw
g (x)

)

ϱg(y) =

 Rgq

RgRIB

ω

 =:

 ϱqg(y)

ϱRIB
g (y)

ϱωg (y)


ψg(u) =



Rgg

I

M0

Mv

Mω

F0

Fv

Fω


=:



ψg
g(u)

ψI
g(u)

ψM0
g (u)

ψMv
g (u)

ψMω
g (u)

ψF0
g (u)

ψFv
g (u)

ψFω
g (u)


(14.I)

and

φg(x) =

(
Rgvr

w

)
=:

(
φvr

g (x)

φw
g (x)

)

ϱg(y) =

 q

RIBR
T
g

Rgω

 =:

 ϱqg(y)

ϱRIB
g (y)

ϱωg (y)


ψg(u) =



g

RgIR
T
g

RgM0

RgMvR
T
g

RgMωR
T
g

RgF0

RgFvR
T
g

RgFωR
T
g


=:



ψg
g(u)

ψI
g(u)

ψM0
g (u)

ψMv
g (u)

ψMω
g (u)

ψF0
g (u)

ψFv
g (u)

ψFω
g (u)


(14.B)

where g = Rg ∈ SO(3).

The proof of Proposition 1 is given in Appendix A.
Both transformation groups characterize the rotational symmetry of the aircraft dynamics. Since the transformation

group defined by Eqs. (14.I) consists of rotations of inertial frame quantities, we call it the inertial transformation group.
This transformation group reflects the fact that the orientation of the inertial frame is arbitrary. Conversely, Eq. (14.B)
consists of rotations of body frame quantities and thus is called the body transformation group. Its definition recognizes
that the orientation of the body frame is also arbitrary as long as parameters (e.g., aerodynamic force and moment
parameters) are appropriately expressed in the rotated coordinate frame. When appropriate, we will append equation
numbers with “I” or “B” when they apply to transformations groups (14.I) or (14.B), respectively.
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III. Symmetry-Preserving Reduced-Order Wind Observers
Now that we have established how the dynamics (10) are SO(3)-invariant, the theory developed by the authors

in [26] can be used to obtain reduced-order observers that preserve the symmetries associated with transformation
groups (14.I) and (14.B).

A. The Moving Frame
To preserve symmetries in the observer dynamics, we make use of a moving frame [29, Ch. 8], which can be used to

find invariant functions of the system’s state. The moving frame is intimately tied to how sets of transformed points
{ϱg(y) ∈ Y | g ∈ G}, called G-orbits, relate to the composition of Lie group actions. For our problem, we only need
to consider the transformation on the measured part of the state, ϱg(y). Therefore, it is sufficient to consider a moving
frame to be a mapping γ : Y → G that has the following equivariance property.

γ(ϱg(y)) ∗ g = γ(y) (15)

Geometrically, the moving frame may be viewed as the map from the state space to the Lie group element that
transforms points to a chosen cross-section – a submanifold K ⊆ Y that transversely intersects G-orbits on Y . This
interpretation provides a method for constructing a moving frame [24, 29], which we summarize as follows. For an
r-dimensional Lie group G acting freely∗ on the p-dimensional manifold Y , let ϱinvg be the part of ϱg that maps points
y ∈ Y to an r-dimensional submanifold of Y such that ϱinvg is invertible with respect to g in a neighborhood of the
identity element e ∈ G. Then, one can select a constant k in the image of ϱinvg that defines the unique point at which the
G-orbit of a generic point y intersects the (p− r)-dimensional cross-section K. In other words, the moving frame is
obtained by solving the normalization equation

ϱinvh (y) = k (16)

for h ∈ G. The local solution h = γ(y) defines the moving frame, as depicted in Figure 1.

y

ϱg(y)

γ(y)

γ(ϱg(y))

ϱinv
γ(y)(y) = k ϱγ(y)(y)

Y

G

K

G-orbit of y

ϱg

ϱγ

γ

(·) ∗ g

Fig. 1 Equivariance of the moving frame γ and its construction via the cross-section K.

Since the attitude state space of the system is G itself, the moving frame γ : Y → G is naturally defined by the
element of G = SO(3) whose action on the rotational configuration yields the identity element, e = I. Therefore, the
normalization equations are

RhRIB = I (17.I)

RIBR
T
h = I (17.B)

which imply

h = γ(y) = RT
IB (18.I)

h = γ(y) = RIB (18.B)
∗The Lie group G is said to act freely on Y if ϱg(y) = y implies g is the identity element, e.

5



are the group elements that define moving frames with the equivariance property (15). The moving frame will be used
to construct the an invariant mapping from the measured states to estimates of the unmeasured states, which is then used
to define the form of the symmetry-preserving reduced-order observer (Section III.B) and obtain sufficient conditions
for its stability (Section III.C).

B. Invariant Pre-Observer
With moving frames identified, we can construct symmetry-preserving reduced-order observers, defined as follows.

Definition 1 ([26]). The dynamical system
ż = α(z,y,u) (19)

with output
x̂ = z + β(y) (20)

for some smooth map β : Y → X is a G-invariant reduced-order pre-observer if the system

˙̂x = α(x̂− β(y),y,u) + Tβ(y) · h(x,y,u) (21)

is G-invariant and the manifold

Z = {(z,x,y) ∈ X × X × Y | z = x− β(y)} (22)

is positively invariant. A G-invariant pre-observer is a G-invariant observer if Z is asymptotically attractive.

The key to constructing the pre-observer (19) is the choice of β, which we call the observer map. From Lemma 1
in [26], let

β(y) = φγ(y)−1

(
ℓ
(
ϱγ(y)(y)

))
(23)

where ℓ : Y → X is a smooth map. As illustrated in Figure 2, this choice of β is special in that it commutes with the
transformation group. That is,

φg(β(y)) = β(ϱg(y)) (24)

y
ϱg(y)

β(y)

φg(β(y)) = β(ϱg(y))

Y

X

β Tβ

β Tβ

ϱg

Tϱg

φg

Tφg

Fig. 2 Commutative relationship between β and the transformation group.
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Inspecting the choice of β in Eq. (23), we notice that ϱRIB

γ(y)(y) = I. Therefore, we need only consider
ℓ : Y \ SO(3) → X . Let

ℓ(y) =

[
Lq

vr Lω
vr

Lq
w Lω

w

]
︸ ︷︷ ︸

L

[
q

ω

]
(25)

where L is the observer gain matrix which we allow to vary with time. With this choice of ℓ, Eq. (23) becomes

β(y) =

[
Lq

vrR
T
IBq +L

ω
vrω

RIBL
q
wR

T
IBq +RIBL

ω
wω

]
(26.I)

β(y) =

[
RT

IBL
q
vrq +R

T
IBL

ω
vrRIBω

Lq
wq +L

ω
wRIBω

]
(26.B)

Next, we use Theorem 1 in [26] to obtain an expression for α that yields a G-invariant pre-observer.

Theorem 1 ([26]). Supposeβ is given by Eq. (23) and thatφg(x) is linear inx. Let the vector fieldα(·,y,u) : X → TX
be defined by

α(z,y,u) = f(z + β(y),y,u)− Tβ(y) · h(z + β(y),y,u) (27)

Then, the dynamical system (19) with output (20) is a G-invariant, reduced-order pre-observer.

Applying this theorem, we write the components of α as

αvr(z,y,u) = v̂r × ω +RT
IBg +

1

m
(F0 + Fvv̂r + Fωω)−Lq

vrR
T
IB (RIBv̂r + ŵ)

−Lω
vr
I−1 (Iω × ω +M0 +Mvv̂r +Mωω) +L

q
vrS(ω)R

T
IBq − L̇q

vrR
T
IBq − L̇ω

vrω (28a.I)

αw(z,y,u) = −RIBL
q
wR

T
IB (RIBv̂r + ŵ)−RIBL

ω
wI

−1 (Iω × ω +M0 +Mvv̂r +Mωω)

−RIBS(ω)L
ω
wω −RIB (S(ω)Lq

w −Lq
wS(ω))R

T
IBq −RIBL̇

q
wR

T
IBq −RIBL̇

ω
wω (28b.I)

and

αvr(z,y,u) = v̂r × ω +RT
IBg +

1

m
(F0 + Fvv̂r + Fωω)−RT

IBL
q
vr (RIBv̂r + ŵ)

−RT
IBL

ω
vrRIBI

−1 (Iω × ω +M0 +Mvv̂r +Mωω) + S(ω)R
T
IBL

q
vrq

+ S(ω)RT
IBL

ω
vrRIBω −RT

IBL̇
q
vrq −R

T
IBL̇

ω
vrRIBω (28a.B)

αw(z,y,u) = −Lq
w (RIBv̂r + ŵ)−Lω

wRIBI
−1 (Iω × ω +M0 +Mvv̂r +Mωω)− L̇q

wq− L̇ω
wRIBω (28b.B)

for transformation groups (14.I) and (14.B), respectively, where

v̂r = zvr +L
q
vrR

T
IBq +L

ω
vrω

ŵ = zw +RIBL
q
wR

T
IBq +RIBL

ω
wω

(29.I)

v̂r = zvr +R
T
IBL

q
vrq +R

T
IBL

ω
vrRIBω

ŵ = zw +Lq
wq +L

ω
wRIBω

(29.B)

C. Invariant Observer
We now aim to choose the gain matrix L such that the pre-observer given by Eqs. (19) and (20) is a G-invariant

reduced-order observer. That is, we seek sufficient conditions for which the zero-error manifold Z is asymptotically
attractive. Consider the invariant error coordinates

η(z,x,y) = φγ(y)(z) + ℓ(ϱγ(y)(y))−φγ(y)(x) (30)
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They are invariant in the sense that η : X × X × Y → X is an invariant map. They are valid error coordinates because
η = 0 if and only if (z,x,y) ∈ Z , the zero-error manifold prescribed in Eq. (22).

Consider the following definitions. For any g ∈ G, let Λg : Y → X be the map

Λg(y;η) = φϱg(y)(η)

holding η constant. Using the moving frame (18), let

X = φγ(y)(x), Y = ϱγ(y)(y), U = ψγ(y)(u) (31)

which, by construction, are invariant functions of the system state and input [29, Ch. 8]. Then, Theorem 2 of [26] gives
an invariant error system whose stability is a sufficient condition for the pre-observer given by Eqs. (19) and (20) to be a
G-invariant reduced-order observer; that is, x̂→ x as t → ∞.

Theorem 2 ([26]). Suppose the assumptions of Theorem 1 hold. The G-invariant pre-observer (19) is a G-invariant
observer if the origin η = 0 of the invariant error system

η̇ = f(X + η,Y ,U)− f(X,Y ,U)− Tβ(Y ) ·
(
h(X + η,Y ,U)− h(X,Y ,U)

)
+TΛγ(y)(y;η) · h(X,Y ,U) (32)

is asymptotically stable, uniformly inX , Y , and U .

To apply Theorem 2, we expand and simplify Eq. (32) to obtain the invariant error dynamics

η̇vr = −S(ω)ηvr +
1

m
Fvηvr −Lq

vr (ηvr + ηw)−L
ω
vrI

−1Mvηvr

η̇w = −Lq
w (ηvr + ηw)−Lω

wI
−1Mvηvr − S(ω)ηw

(33.I)

η̇vr =
1

m
RIBFvR

T
IBηvr −Lq

vr
(ηvr + ηw)−Lω

vrRIBI
−1MvR

T
IBηvr

η̇w = −Lq
w (ηvr + ηw)−Lω

wRIBI
−1MvR

T
IBηvr

(33.B)

Notice that for the body transformation group, the transformed input signal appears as RIBFvR
T
IB = UFv

and
RIBI

−1MvR
T
IB = UIUMv

. Also, the time derivative of the observer gain matrix does not appear in the invariant
error dynamics, allowing for flexibility in its selection.

Remark 1. The error system (33) depends only on the invariant error η and the invariants Y and U which along
withX constitute a set of n+ p− r functionally independent invariants, I(x,y,u) [29, Ch. 8]. This observation is
consistent with the full-order case considered in [24, Theorem 3].

We now aim to choose the dynamics of the matrix L to render η = 0 asymptotically stable. Equation (33) can be
viewed as a linear, time-varying (LTV) system since Y and U are known signals. Therefore, the stabilization of the
invariant error system is reduced to LTV observer design for the fictitious system

ξ̇ = A(t)ξ

ζ = C(t)ξ
(34)

where

A(t) =

[
−S(ω(t)) + Fv(t)/m 0

0 −S(ω(t))

]
, C(t) =

[
I I

I−1Mv(t) 0

]
(35.I)

A(t) =

[
RIB(t)Fv(t)R

T
IB(t)/m 0

0 0

]
, C(t) =

[
I I

RIB(t)I
−1Mv(t)R

T
IB(t) 0

]
(35.B)

Using L(t) as the linear observer gain matrix for the system (34), the closed-loop error dynamics

η̇ = (A(t)−L(t)C(t))η (36)

8



are exactly the invariant error system (33). Therefore, one must simply choose positive definite matrices Q and R,
propagate the differential Riccati equation

Ṗ (t) = A(t)P (t) + P (t)AT(t)− P (t)CT(t)R−1C(t)P (t) +Q (37)

and let
L(t) = P (t)CT(t)R−1 (38)

The preceding discussion proves the main result of this paper:

Theorem 3. If the pair (A(t),C(t)) is observable, then the SO(3)-invariant pre-observer (19) withα given by Eq. (27)
andL(t) satisfying Eq. (38) is an exponentially stable SO(3)-invariant observer for the aircraft in wind given by Eq. (9).

The observability of (A(t),C(t)) is not overly restrictive. Most nonlinear aerodynamic models for both fixed-wing
and multirotor aircraft satisfy this observability requirement. For example, constructing Fv andMv from the large-
domain fixed-wing and multirotor models given in [30] and [31], respectively, both yield observability. The theoretical
results are demonstrated in simulations of a multirotor aircraft in the following section.

IV. Simulation Results
The symmetry-preserving reduced-order wind observer was implemented on simulated flight data for the small

quadrotor UAV considered in [31]. Neglecting velocity-dependent inflow effects, airframe drag, and motor inertia for
simplicity, we consider the following nonlinear aerodynamic model.

Fx = ρπR2Nrur

(
−CHµx

Rδt− CHµ0,µx
ν0 − CHµx,µz

wr

)
(39a)

Fy = ρπR2Nrvr
(
−CHµx

Rδt− CHµ0,µx
ν0 − CHµx,µz

wr

)
(39b)

Fz = ρπR2
(
− CT0

R2Nrδ
2t+ CTµ0

RNrν0δt+ CTµz
R
(
Nrwrδt− pδa− qδe

)
− CTµ2

x
Nr(u

2
r + v2r )

)
(39c)

Mx = ρπR2
(
− CRµx

R2urδr + CT0
R2δ2a− CTµ0

Rν0δa− CTµz
R
(
wrδa− 1

2ℓ
2(Nrpδt+ qδr)

)
− CHµx

RNrhvrδt− CHµ0,µx
Nrhvrν0 − CHµx,µz

Nrhvrwr

)
(39d)

My = ρπR2
(
− CRµx

R2vrδr + CT0R
2δ2e− CTµ0

Rν0δe− CTµz
R
(
wrδe− 1

2ℓ
2(Nrqδt+ pδr)

)
+ CHµx

RNrhurδt+ CHµ0,µx
Nrhurν0 + CHµx,µz

Nrhurwr

)
(39e)

Mz = ρπR2
(
CQ0R

3δ2r + CQµ0
R2ν0δr + CQµz

R2
(
wrδr − pδe− qδa

)
− CQµ2

z
RNrℓ

2pq

− CHµx
R(urδa+ vrδe) +

1
2CHµx,µz

Nrℓ
2(urp+ vrq)

)
(39f)

Here, ρ is the air density, R is the rotor radius, Nr = 4 is the number of rotors, ν0 is the rotor inflow velocity in
hover, ℓ is the arm length, h is the height of the rotor disc above the vehicle center of gravity, and δ = (δt, δa, δe, δr),
δ2 = (δ2t, δ2a, δ2e, δ2r) are virtual actuators satisfying

δt

δa

δe

δr

 = Mix


Ω1

Ω2

...
ΩNr

 ,


δ2t

δ2a

δ2e

δ2r

 = Mix


Ω2

1

Ω2
2

...
Ω2

Nr

 (40)

for motor speeds Ω1, . . . ,ΩNr
. The mixing matrix Mix is determined by the geometry of the aircraft (Figure 3) and is

given for the quadrotor in consideration as follows:

Mix =


1
4

1
4

1
4

1
4

−ℓ
√
2
2 +ℓ

√
2
2 +ℓ

√
2
2 −ℓ

√
2
2

+ℓ
√
2
2 −ℓ

√
2
2 +ℓ

√
2
2 −ℓ

√
2
2

+1 +1 −1 −1

 (41)
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Fig. 3 Quadrotor geometry.

Note that δ and δ2 are not controlled independently; rather they are related through Mix. Therefore, we consider δ to
be the control input.

The tuning parametersQ andR can be selected in a number of ways, albeit less intuitively than a linear quadratic
regulator or a Kalman-Bucy filter since the state and output of the LTV system (34) do not hold similar physical meaning.
In this work, we chose to selectQ andR using an inverse optimality approach. LetA0 andC0 be the constant matrices
defined by evaluating Eq. (35) at hover (or any other nominal flight condition). Then, choose a gain matrix Lpp to place
the poles of the LTI nominal error system η̇ = (A0 −LppC0)η at some desired location. We chose to place the poles
in a first-order low-pass Butterworth configuration with a cutoff frequency of 4 rad/s. Let L0 = P0C

T
0R

−1 where P0

satisfies the algebraic Riccati equationA0P0 +P0A
T
0 −P0C

T
0R

−1C0P0 +Q = 0. Using a constrained optimization
solver, the inverse optimality problem is solved by numerically findingQ andR that minimize the cost function

J =
1

2
Tr
[
(L0 −Lpp)

T(L0 −Lpp)
]

(42)

while constrainingQ andR to be positive definite and norm bounded (e.g., ∥Q∥ ≤ 100 and ∥R∥ ≤ 100). This tuning
approach was found to yield favorable results across many simulation scenarios. All results below were obtained using

Q =


90.8 0 0 0 0 0
0 90.8 0 0 0 0
0 0 36.4 0 0 −23.8
0 0 0 90.8 0 0
0 0 0 0 90.8 0
0 0 −23.8 0 0 80.4

 , R =


11.4 0 0 0 −2.0 0
0 11.4 0 −2.1 0 0
0 0 7.0 0 0 0
0 −2.1 0 0.8 0 0

−2.0 0 0 0 0.7 0
0 0 0 0 0 50.3

 (43)

A. Demonstration of Theoretical Guarantees
The symmetry-preserving reduced-order wind observers detailed in Section III were first implemented in simulation

with all assumptions satisfied in order to demonstrate the theoretical convergence guarantees. That is, the aerodynamic
force and moment perfectly satisfy Assumption 2 and the wind is constant, satisfying Assumption 1. For this ideal case,
we decompose the nonlinear aerodynamic model in Eq. 39 according to Eq. (8) and evaluate the argument vr in F0, Fv ,
etc. to a nominal value of zero. Note this only affects the few terms in Eq. (39) that are nonlinear in air-relative velocity.
The aircraft dynamics with the idealized aerodynamic model were simulated in a uniform wind field with components
WN = 10 m/s, WE = −10 m/s, and WD = 0 m/s using Matlab. To showcase the nonlinear stability guarantees and
global nature of the observer, a large-amplitude multisine input excitation was injected on top of the feedback control
signal (Figure 4a). The multisine was constructed with frequencies ranging from 0.01 to 1 Hz to effectively explore the
state space as seen in Figure 4.

The observability condition of Theorem 3 was verified for the simulated trajectory. The LTV observability Gramian
Go(t0, tf ) was numerically constructed backwards in time from tf = 20 to t0 = 0. As shown in Figure 5, the minimum
eigenvalue of the observability Gramian is bounded away from zero backwards in time, implying observability of
(A(t),C(t)) on the interval [t0, 20) for any t0 ≥ 0 [32, Ch. 9]. Due to the structure of A and C, the minimum
eigenvalue λmin(Go) is the same for both transformation groups. Also shown in Figure 5 is the minimum eigenvalue of
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Fig. 4 Ideal simulation in uniform wind.

the observability Gramian for the nominal hover flight condition in zero wind, showing persistent maneuvering is not a
requirement for this observer.
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in
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o
)

Simulated Trajectory
Hover

Fig. 5 Minimum eigenvalue of the LTV observability Gramian on the interval [t0, 20].

Next, the observers for both the inertial and body transformation groups were numerically simulated. The resulting
estimates of air-relative and wind velocity are shown in Figures 6 and 7, respectively. These results demonstrate the
guaranteed exponential convergence despite large variations in the aircraft state. Since all assumptions were satisfied,
the observers designed using both transformation groups yielded nearly identical results. This parity is expected since
the same rotational symmetry of the dynamics is equivalently preserved – just from the viewpoint of different reference
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Fig. 6 Estimated air-relative velocity (ideal case).
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Fig. 7 Estimated wind velocity (ideal case).

frames. The practical difference between using transformation groups (14.I) and (14.B) is the coordinate frame in which
the observer mapping ℓ is expressed.

B. Robustness Analysis
To explore the differences between transformation groups (14.I) and (14.B) and to stress the proposed observer,

the aircraft was simulated in Von Kármán turbulence using the full nonlinear aerodynamic model (39), violating
Assumptions 1 and 2. Additionally, Assumption 3 was violated by introducing measurement noise (the same realization
for all simulations). Specifically, the measurements of q,RIB, and ω respectively satisfied

yq = q + w̃q, yRIB
= RIB exp(S(w̃RIB

)), yω = ω + w̃ω (44)

where w̃q, w̃RIB
, and w̃ω, are zero-mean, Gaussian, continuous-time, white noise with power spectral densities

2× 10−3I m2

Hz , 10−6I 1
Hz , and 5× 10−6I (rad/s)2

Hz , respectively. Since the transient performance and steady state
accuracy of all components of air-relative and wind velocity estimates were similar, we only discuss the North component
of wind velocity. The results for this scenario are shown in Figure 8a, were we see that measurement noise corrupts
the resulting estimate but does not cause an unbounded response. For comparison, the same simulation scenario with
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measurement noise removed is shown in Figure 8b. Here, we see good tracking of the fluctuations in wind velocity – an
important aim in this work. While proof of stability for this case is beyond the scope of this paper, the results shown are
indicative of the observer’s inherent robustness to disturbances, as expected from the fact that the undisturbed invariant
error system is globally exponentially stable [33, Lemma 5.1]. The observer’s robustness to turbulence and modeling
error is considered from the stochastic perspective in [34].
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Fig. 8 Estimated North wind velocity using full nonlinear aerodynamic model with Kármán turbulence.

One caveat about the proposed observer is that care must be taken in its numerical implementation. For example, it
was found the use of a fixed-step Runge-Kutta integration scheme necessitated very small time steps (10−4 seconds).
This issue may be alleviated by using adaptive step sizing as well as methods that leverage the Jacobian of the observer
dynamics. A similar problem encountered in practical implementation is that position data is often available at a much
lower rate than gyro and attitude data. To investigate, a comparison among position data rates of 8 Hz, 20 Hz, and 50 Hz
was conducted using the idealized simulation discussed in Section IV.A. The results for the North wind velocity estimate
are shown in Figure 9. In this case, the most recent position data was held constant between samples. As the sampling
rate increases, we recover the continuous-time results. To improve performance for sampled data, predictions of position
should be propagated between samples. This is an inexpensive computation and is expected to greatly improve accuracy.
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Fig. 9 North wind velocity estimate using sampled position data.

From these results, the benefit of using one transformation group over another is not apparent. To quantify the small
difference between transformation groups, the L2 norm of the estimate error, ∥x̂− x∥L2 = (

∫ tf
t0

∥x̂(t)− x(t)∥2)1/2,
was computed and is tabulated in Table 1. Across all the simulation scenarios considered, the inertial transformation
group produced marginally more accurate estimates.
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Table 1 L2 Norm of Estimate Error, ∥x̂− x∥L2

Transformation Group
Simulation Scenario Inertial Body
Ideal (Figure 7) 2.36 2.38
Von Kármán plus Noise (Figure 8a) 3.99 4.04
Von Kármán (Figure 8b) 3.45 3.47
8 Hz Position Data (Figure 9) 5.65 5.71
20 Hz Position Data (Figure 9) 3.94 3.98
50 Hz Position Data (Figure 9) 3.06 3.09

V. Conclusions
A novel symmetry-preserving, reduced-order observer has been applied to the problem of wind estimation from

aircraft motion. The proposed observer does not rely on a small-perturbation assumption, bur rather exploits the
invariance of the aircraft dynamics under rotations to ensure exponential convergence of the estimate. Furthermore, the
reduced-order formulation does not re-estimate known parts of the state vector, reducing computational complexity and
simplifying tuning. Two different transformation groups were considered and were found to both produce accurate
estimates even when the assumptions of the observer were violated. Quantitative analysis of the state estimate error
showed the observer designed using the inertial transformation group gave slightly more accurate results. Critically, this
provably stable observer provides strong guarantees that can be incorporated into a wide variety of applications, such as
synthetic air data systems, path planning algorithms, safety monitoring solutions, and numerical weather models.

A. Proof of Proposition 1
Note that the tangent maps of the transformation groups (14.I) and (14.B) at (x,y,u) applied to f(x,y,u) and

h(x,y,u) respectively satisfy

Tφg(x) · f(x,y,u) =

(
fvr(x,u)

Rgfw(x,u)

)
and Tϱg(y) · h(x,y,u) =

 Rgfq(x,u)

RgfRIB
(x,u)

fω(x,u)

 (45.I)

Tφg(x) · f(x,y,u) =

(
Rgfvr(x,u)

fw(x,u)

)
and Tϱg(y) · h(x,y,u) =

 fq(x,u)

fRIB(x,u)R
T
g

Rgfω(x,u)

 (45.B)

We must show that the expressions above are equal to the evaluation off andh at the transformed point (φg(x),ϱg(u),ψg(u)).
Starting with the relative velocity dynamics, we have

fvr(φg(x),ϱg(y),ψg(u)) = vr × ω +RT
IBR

T
gRgg +

1

m
(F0 + Fvvr + Fωω) = fvr(x,y,u) (46.I)

fvr(φg(x),ϱg(y),ψg(u)) = Rgvr ×Rgω +RgR
T
IBg +

1

m

(
RgF0 +RgFvR

T
gRgvr +RgFωR

T
gRgω

)
= Rg

(
vr × ω +RT

IBg +
1

m
(F0 + Fvvr + Fωω)

)
= Rgfvr(x,y,u)

(46.B)

The invariance of the apparent wind velocity dynamics ẇ = 0 is trivially satisfied. For the position kinematics, we
write

fq(φg(x),ϱg(y),ψg(u)) = RgRIBvr +Rgw = Rgfq(x,y,u) (47.I)

fq(φg(x),ϱg(y),ψg(u)) = RIBR
T
gRgvr +w = fq(x,y,u) (47.B)
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The attitude kinematics at the transformed point satisfy

fRIB
(φg(x),ϱg(y),ψg(u)) = RgRIBS(ω) = RgfRIB

(x,y,u) (48.I)

fRIB
(φg(x),ϱg(y),ψg(u)) = RIBR

T
gS(Rgω)

= RIBR
T
gRgS(ω)R

T
g

= fRIB
(x,y,u)RT

g

(48.B)

In the second line of Eq. (48.B), we have used the property that S(Rω) = RS(ω)RT for anyR ∈ SO(3) and ω ∈ R3.
Finally, the angular velocity dynamics are invariant since

fω(φg(x),ϱg(y),ψg(u)) = I
−1 (Iω × ω +M0 +Mvvr +Mωω) = fω(x,y,u) (49.I)

fω(φg(x),ϱg(y),ψg(u)) = (RgIR
T
g )

−1
(
RgIR

T
gRgω ×Rgω +RgM0 +RgMvR

T
gRgvr +RgMωR

T
gRgω

)
= RgI

−1 (−S(ω)Iω +M0 +Mvvr +Mωω)

= Rgfω(x,y,u)
(49.B)
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