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Nonlinear Observers for Aircraft Maneuvering in Wind

Jeremy W. Hopwood

(ABSTRACT)

Knowledge of wind velocity is fundamental across fields from atmospheric science to aero-
nautics, yet direct wind sensing is often constrained by operational limits. This motivates
indirect wind estimation methods that infer wind from aircraft motion. However, typical
model-based estimators lack rigorous stability guarantees across the full flight envelope — a
major limitation for safety-critical aerospace applications. This dissertation addresses these
gaps by advancing nonlinear observer design and flight dynamic modeling to estimate wind
from aircraft motion with assured performance.

First, a symmetry-preserving, reduced-order state observer is introduced for the unmeasured
part of a system’s state, leveraging the fact that the system dynamics are invariant under the
action of a Lie group. By using a moving frame to construct invariant observer mappings,
both the design process and stability analysis are simplified. In cases where the system’s
nonlinearities comprise the Lie group’s action, the nonlinear observer may even yield linear
state estimation error dynamics to enable a multitude of design and optimization techniques
that improve performance.

Next, a quasi-steady nonlinear flight dynamic model for multirotor aircraft is derived from
blade-element and momentum theory, ensuring validity over a large operating range while
remaining identifiable from flight data. The utility of this model is assessed through a high-
fidelity simulation study based on wind tunnel data. Recognizing the challenges of parameter
estimation in large-domain models for unstable aircraft, a two-phase data collection method-
ology is proposed. In the first phase, a set of linear time-invariant models is identified at
multiple operating conditions to define an uncertain linear parameter-varying (LPV) model.
In the second phase, a robust LPV control law with an H∞ norm bound guarantee is syn-
thesized, enabling automated flights with sufficiently large excitation signals for nonlinear
system identification.

Finally, the nonlinear observer theory is combined with the large-domain flight dynamic
models to achieve provably effective wind estimation for maneuvering aircraft. The frame-
work is extended to uncertain aerodynamics and random turbulence by formulating the
system as a stochastic differential equation. A nonlinear passivity-based wind observer is
also introduced, serving as a full-order alternative to reduced-order methods. Together, these
observers offer stability guarantees applicable to general maneuvering flight, demonstrated
on both fixed-wing and multirotor UAVs. Overall, this dissertation contributes to safer, more
autonomous aerospace systems.



Nonlinear Observers for Aircraft Maneuvering in Wind

Jeremy W. Hopwood

(GENERAL AUDIENCE ABSTRACT)

Accurate wind measurements are vital for applications ranging from weather prediction to
aircraft navigation and control, yet directly measuring wind is often impractical or infeasi-
ble, especially for emerging vertical takeoff and landing vehicles. This creates a critical need
for methods that indirectly estimate wind using aircraft motion data. Existing estimation
methods, however, struggle to guarantee performance across the full range of flight condi-
tions, posing risks to safety-critical aerospace applications. This dissertation addresses these
shortcomings by advancing both theoretical and practical tools for estimating wind during
flight. At its core is a novel nonlinear state observer that estimates the unknown states of a
system by leveraging symmetry in the dynamics. This geometric insight simplifies both the
observer’s construction and the analysis of its performance. To complement these theoreti-
cal advances, a practical nonlinear flight dynamic model for multirotor aircraft is developed,
integrating rotor aerodynamic theory with established modeling approaches suitable for real-
time navigation and control. Together, these theoretical and practical contributions form a
framework for wind estimation that accounts for aerodynamic uncertainty and turbulence
in general maneuvering flight. Simulation and flight test demonstrations are performed on
both fixed-wing and multirotor aircraft, showcasing the effectiveness of the proposed meth-
ods and their potential to enhance aircraft autonomy and reliability when under challenging
operating conditions.



Dedication

To Kylie,

The wind that lifts me
And the heart that steadies me,
Raising me higher
Than I could imagine alone.
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Chapter 1

Introduction

Knowledge of wind velocity is fundamental across disciplines ranging from atmospheric sci-
ence to aeronautics, supporting critical applications such as weather forecasting and flight
safety. For example, atmospheric scientists rely on wind measurements as key boundary
conditions in numerical weather models, while in aeronautics, measurements of airspeed, an-
gle of attack, and sideslip angle are vital for pilot decision-making and enabling safer, more
automated flight operations. Direct measurements of wind velocity are often constrained by
engineering and operational limitations. Traditional sensing methods, such as anemometers
and air data probes, may not always be feasible due to payload restrictions, cost constraints,
or operational limitations. This challenge has motivated the development of wind estima-
tion techniques that infer wind velocity indirectly from aircraft motion without the need for
specialized sensors. Such approaches are applicable across a broad spectrum of vehicle sizes
and types, from small unmanned aerial vehicles (UAVs) to large commercial aircraft.

Wind estimation plays a critical role in several engineering and scientific applications. In
aeronautics, synthetic air data systems leverage estimated wind information to reconstruct
air data (i.e., airspeed, angle of attack, and sideslip angle) without relying on dedicated
sensors such as multi-hole probes or vaned air data units [96], [141]. Synthetic air data
systems not only provide a fallback in scenarios where sensors fail, but also give air data
measurements in regions of flight where there is not enough airflow to use such sensors.
Additionally, path planning algorithms can incorporate real-time wind estimates to improve
efficiency and safety guarantees [92], [157], which is especially important in urban environ-
ments. Beyond aviation, wind estimation is vital to weather prediction and atmospheric
science, particularly within the atmospheric boundary layer, which remains poorly sampled
due to operational constraints on traditional meteorological platforms such as weather bal-
loons [17], [55], [79], [123], [146]. For these reasons, advances in wind estimation technologies
have become increasingly relevant in the Urban Air Mobility (UAM) and Advanced Air Mo-
bility (AAM) missions, where understanding low-altitude wind conditions is essential for safe
and reliable operations of future aerial vehicles [1], [128]. For example, the development of
wind estimation technologies is important for relaxing flight safety margins to enable more
weather-tolerant operations [85], [144].

The increasing reliance on wind estimates highlights the need for solutions that enjoy stronger
mathematical guarantees; that is, assurance that the estimates of wind velocity “converge”
in some sense to the true wind velocity. These guarantees can enable the integration of wind

1



2 Chapter 1. Introduction

estimates into safety monitoring systems, such as those described in references [98] and [140],
providing an alternative to traditional measurement techniques. Typical model-based esti-
mation and filtering methods lack such convergence guarantees for nonlinear systems. Non-
linear filtering techniques, such as the extended Kalman filter, often only retain stability
guarantees for small perturbations about steady motion with sufficiently low noise [90]. For
aircraft, there are two ways in which the small-perturbation assumption may be violated.
The first is aggressive maneuvering and agile flight, which is especially applicable for UAVs
that do not impose the physiological limitations of the human pilot. The second is large
changes in wind conditions as especially seen in urban scenarios with the “urban canyon
effect.” Even if the vehicle is steadily translating in inertial space, the large changes to the
aerodynamics necessitate a more careful approach in the nonlinear setting. These obser-
vations motivate the exploration of nonlinear observer techniques for wind estimation. In
contrast with state estimators, nonlinear observers provide a stability guarantee on a state
estimation error system.

The design of nonlinear observers with guaranteed performance across a wide range of oper-
ating conditions necessitates system models that are accurate across these same conditions.
In other words, confidence in model-based wind estimates falls to the severity of approxima-
tions and assumptions made in the flight dynamic model as well as the estimation approach.
This observation motivates a particular interest in expanding operating conditions for which
flight dynamic models and the estimation algorithms remain accurate and mathematically
valid, thereby extending such properties to the resulting wind and aircraft state estimates.
Thus arise two thrusts of this dissertation in pursuit of provably effective wind estimation
for aircraft maneuvering in turbulent wind.

1. Theoretical Advancements in Nonlinear Observers
Methods for designing state observers for nonlinear systems are limited with no general
techniques that guarantee global convergence of the estimation error, as there are in the linear
case. Provably effective state estimation strategies are inevitably limited to special classes
of systems, motivating considerable attention in the past twenty-five years. In particular,
the role of differential geometry in observer design has been explored in which symmetries
of a nonlinear dynamical system are preserved in the state observer and its state estimation
error dynamics. Existing approaches to symmetry-preserving observers only consider the full-
order case in which the entire state of the system is estimated. In many scenarios, however,
part of the system’s state may be known with negligible error or determined as the output
of an independently designed observer. Thus, reduced-order observers are an attractive
alternative where only the unmeasured part of the system’s state is estimated. After covering
mathematical preliminaries in Chapter 2 of this dissertation, Chapter 3 presents a reduced-
order observer that is also symmetry-preserving, thereby simplifying stability analysis and
enabling performance optimization.

2. Flight Dynamic Modeling and System Identification
Accurate flight dynamic models are essential for model-based control and estimation of UAVs,
but obtaining nonlinear models valid over a wide range of flight conditions is challenging.
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Traditional control- and estimation-oriented multirotor modeling approaches struggle to cap-
ture nonlinear phenomena and thus weaken any derived control and estimation guarantees
beyond small perturbations from some operating condition. In Chapter 4, a nonlinear model
for multirotor flight is developed using blade-element and momentum theory in a way that
balances accuracy and practicability. However, system identification of large-domain mul-
tirotor models is difficult, as these types of UAVs are inherently unstable. In particular,
stabilizing controllers can introduce regressor correlation and suppress dynamics of interest,
complicating data collection and parameter estimation. Furthermore, the level of input ex-
citation required for parameter estimation can drive the system unstable — a situation that
must be avoided for high-risk and high-cost vehicles. Chapter 5 addresses these challenges by
formulating a two-phase system identification process using robust linear parameter-varying
(LPV) control techniques. With decorrelated input excitation signals and reference trajec-
tories, the control law bounds the worst-case vehicle’s response to these input excitations.
This approach enables safe, automated flight experiments providing uncorrelated data for
nonlinear model identification.

Safety-Critical Wind Estimation
Bringing together the observer theory from Chapter 3 and the large-domain flight dynamic
model developed in Chapter 4, Chapters 6–8 detail how nonlinear observers are employed to
estimate wind velocity for maneuvering aircraft. Specifically, the integration of symmetry-
preserving reduced-order (Chapter 7) and passivity-based observers (Chapter 8) with large-
domain flight dynamic models ensures provably effective wind estimation, providing essential
theoretical guarantees for stability and convergence — especially important for safety-critical
applications. A key challenge remains in the inherent imperfections of any model, requir-
ing the incorporation of randomness as a natural extension to account for the remaining
unpredictable behavior. While state estimators like the Kalman filter properly deal with
this randomness and inherently provide local stochastic stability guarantees, the explicit
stochastic stability properties of nonlinear observers remain largely unexplored. To fill this
gap, Chapter 7 details the extension of the symmetry-preserving reduced-order wind observer
to include uncertain aerodynamics and random turbulence. The wind estimation approaches
in Chapters 7–8 are demonstrated using both simulation and flight data for fixed-wing and
multirotor UAVs.

This dissertation is a unique juxtaposition of theory and application that is deeply motivated
by the unifying goal of wind estimation for aircraft maneuvering in turbulent wind. As such,
certain chapters may be read independently of others. Overall, this dissertation is organized
according to the chapter dependence chart shown in Figure 1.1.

The primary contributions presented in this dissertation relate to nonlinear observer theory,
nonlinear flight dynamic modeling and system identification, and wind estimation for aircraft
maneuvering in turbulent wind. Specific contributions are summarized as follows.

• Theoretical development of a symmetry-preserving reduced-order nonlinear observer
for systems defined on smooth manifolds under a Lie group’s action [70] (Chapter 3).
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Figure 1.1: Chapter dependence chart

• Formulation and analysis of a nonlinear, quasi-steady flight dynamic model for multi-
rotor aircraft [74] (Chapter 4).

• Development and application of a control methodology for obtaining sufficiently rich
excitation data for large-domain system identification of unstable aircraft in a provably
safe manner [76] (Chapter 5).

• Refinement and generalization of the stochastic process models used in nonlinear,
model-based wind estimation [67], [71], [75] (Chapter 6).

• Application of the author’s symmetry-preserving reduced-order observer to the prob-
lem of wind estimation using a deterministic system model defined on the tangent
bundle of the special Euclidean group [77] (Chapter 7).

• Extension of the symmetry-preserving reduced-order wind observer to flight in tur-
bulence with uncertain aerodynamics by extending the theoretical results of [70] to a
special class of stochastic differential equations [71] (Chapter 7).

• First application of a passivity-based observer to the problem of wind estimation for
maneuvering aircraft [75] (Chapter 8).

Additional contributions by the author not included in this dissertation include the following.

• Development and flight testing of a stall spin flight termination sequence for fixed-wing
UAVs using parallel robust H∞ and yaw-varying linear quadratic control laws to direct
its spinning descent along a desired inertial direction [72], [73].
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The author’s collaborative contributions surrounding wind estimation and system identifi-
cation for small UAVs are listed as follows.

• Wind estimation using an H∞ filter to bound the worst-case effect of turbulence on
the estimate error of a specified frequency band of the wind [47], [50].

• Uncertainty quantification and variance reduction in wind estimates using generalized
polynomial chaos [48], [49].

• Square root information filtering for quadrotor wind estimation with a comparison to
dual-Doppler LiDAR wind measurements [104].

• Maneuvering wind estimation using an unscented Kalman filter for bio-inspired ap-
proaches to chemical source localization [36].

• Model-based wind estimation incorporating unsteady aerodynamics identified from
flight data [67].

• Nonlinear system identification for fixed-wing aircraft in a stall spin [65], [66].

• Remote uncorrelated piloted inputs for nonlinear system identification of UAVs [63],
[64].

• Development of a flight test methodology for system identification and control law
testing for small UAVs [62].



Chapter 2

Mathematical Preliminaries

2.1 Introduction
This chapter provides the mathematical preliminaries for this dissertation, which are a blend
of differential geometry and probability theory in the context of designing stable observers
for rigid body motion. An introduction to differential geometry is presented in Section 2.2,
formalizing how systems are defined on “curvy spaces” and how calculus is written in this
coordinate-free setting. Next, Section 2.3 presents the notion of a Lie group and how it acts
on a dynamical system. In particular this section discusses when a system’s dynamics are
left unchanged by the Lie group action — that is, invariant. As the motivating application
of the preliminaries in Sections 2.2 and Section 2.3, the equations of motion for a rigid body
aircraft are detailed in Section 2.4.

In control and observer applications, we are interested in influencing or understanding how
systems respond to perturbations from some equilibrium condition. Section 2.5 details the
deterministic notions of stability that are used in this dissertation along with Lyapunov
sufficient conditions. However, Sections 2.2–2.5 only deal with deterministic, unperturbed
systems. More generally, we are interested in systems

ẋ = f(x, ξ)

where ξ is some unknown disturbance. Often, this disturbance is referred to as “noise,”
reflecting inherent randomness or uncertainty in its value over time. Perhaps statements can
be made about its frequency content (e.g., white noise has constant power spectral density) or
its magnitude (e.g., ∥ξ∥L2 <∞). However, care must be taken when dealing with stochastic
nonlinear systems of the form

ẋ = f(x,u) +D(x,u)× white noise

Sections 2.6 and 2.7 lay out the preliminaries surrounding what white noise means in this
context and how it affects solutions x(t). Next, Section 2.8 presents stochastic versions of the
stability concepts detailed in Section 2.5, including for the class of systems where the noise
does not vanish at the desired equilibrium condition — the case encountered in observer
design for stochastic systems.

6
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2.2 Differential Geometry
This section is largely based on texts by Boothby [25], Murray et al. [116, Appendix A],
Marsden and Ratiu [102], and Tu [147].

The state space of a dynamical system is naturally represented by a smooth manifold. Sys-
tems evolve according to physical and mathematical laws that are not generally captured
by unconstrained motion in Euclidean space, Rn. In this dissertation, it suffices to con-
sider an n-dimensional manifold M to be a set that is everywhere locally homeomorphic to
(“looks like”) Rn. To facilitate calculus (impose a differentiable structure) onM, we consider
pairs (U, φ) called coordinate charts, defined by an open set U ⊂M and a homeomorphism
φ : U → V ⊂ Rn. Charts parameterize open subsets of manifolds. As a familiar example in
mechanics, Euler angles locally parameterize the manifold of rigid-body orientations. Two
overlapping charts (φα, Uα) and (φβ, Uβ) are called C∞-compatible if φ−1

β ◦ φα is a diffeo-
morphism — that is, a smooth (C∞ or infinitely differentiable) map with a smooth inverse.
Here, “◦” denotes the composition of maps. A smooth atlas is collection of C∞-compatible
charts {(φγ, Uγ)} where the collection of Uγ’s coverM. A smooth (also, C∞ or differentiable)
manifold is a manifold equipped with a smooth atlas.

Let C∞(M) denote the space of smooth, R-valued functions on the n-dimensional smooth
manifold M. A derivation at a point p ∈ M is a linear map Xp : C

∞(p)→ R that satisfies
Leibniz rule:

Xp(fg) = (Xpf)g(p) + f(p)(Xpg) for all f, g ∈ C∞(p)

The tangent space toM at p, denoted TpM, is the vector space of derivations at p. In terms
of a coordinate chart (φ, U) with coordinates (x1, . . . , xn), this definition of the tangent space
(now equipped with the basis { ∂

∂x1
, · · · , ∂

∂xn
}) reveals that each derivation

Xp = X1
∂

∂x1
+ · · ·+Xn

∂

∂xn

is associated with the vector X = [X1 · · · Xn]
T ∈ Rn. Thus, derivations are also called

tangent vectors — a description that invokes a rather helpful visualization (see Figure 2.1).

Consider two smooth manifolds M and N , and let F : M → N be a smooth map. Just
as each point p ∈ M is mapped to a point F (p) ∈ N , so are tangent vectors Xp ∈ TpM
mapped to TpF (Xp) ∈ TF (p)N as illustrated in Figure 2.1. The map TpF : TpM→ TF (p)N
is called the tangent map (or derivative map) of F at p. For f ∈ C∞(p),

TpF (Xp)(f) = Xp(f ◦ F )

The chain rule for a composition of maps H = F ◦G is thus written as

TpH = TG(p)F ◦ TpG (2.1)

If F : M → N is a diffeomorphism, then TpF is an isomorphism (a structure-preserving,
invertible map) of tangent spaces with inverse (TpF )

−1 = TF (p)F
−1.
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p F (p)

M N

F

Xp
TpF (Xp)

Figure 2.1: The tangent map

For the special case where F is a map from Rn to Rm (or open subsets thereof), the tangent
map TpF is simply the Jacobian, ∂F , which is independent of the base point p. In (global)
coordinates (x1, . . . , xn) for Rn, each of the m components F may be denoted Fi(x1, · · · , xn).
As a slight abuse of notation, we often write F (x) where x = [x1 · · · xn]T and F =
[F1 · · · Fm]T. Hence, we have the familiar Jacobian matrix ∂F

∂x
which, as a matrix, is a linear

map from Rm to Rn.

The collection of all the tangent spaces along with the base manifold is called the tangent
bundle. It is formally the disjoint union

TM =
⨆︂
p∈M

TpM

Even though the tangent spaces TpM are already disjoint by definition, this notation ex-
plicitly1 includes the base space M making TM a 2n-dimensional smooth manifold — n
dimensions being attributed to M and n more to the tangent spaces.

The natural projection π : (p, f(p)) ∈ TM ↦→ p ∈ M maps the tangent bundle back to the
base manifold. With this additional structure, a vector field f on a manifold M is a rule
that assigns each point p ∈ M a tangent vector f(p) ∈ TpM such that π ◦ f = id (the
identify map). A curve c(t) taking values onM is called an integral curve of the vector field
f if

ċ(t) = f(c(t)) (2.2)

Through this viewpoint, we see that vector fields define dynamical systems. In local coordi-
nates we will more compactly write

ẋ = f(x) (2.3)

where f is the local vector representation of f : p ∈ M ↦→ (p, f(p)) ∈ TM and x(t) is the
vector representation of c(t) ∈M.

1Many authors use the notation TM =
⋃︁

p∈M TpM and note the inclusion of the base space M. Using
the disjoint union

⨆︁
p∈M TpM :=

⋃︁
p∈M ({p} × TpM) like Tu [147] makes this inclusion explicit.



2.3. Lie Groups and Invariance 9

2.3 Lie Groups and Invariance
This section is based on texts by Boothby [25], Olver [122], and Marsden and Ratiu [102].

A Lie group G is a group2 that is also a smooth manifold with the requirement that the
group multiplication (g, h) ↦→ g ∗ h and inverse g ↦→ g−1 are smooth maps. Thus, Lie group
elements represent both points on a manifold and actions on those points. Examples of these
actions include (left) translation, conjugation, adjoint action, and the coadjoint action. More
generally, a Lie group G acts on a set X via a map

ϕ : (g, x) ∈ G×X ↦→ ϕg(x) ∈ X

satisfying the following two conditions:

i) ϕe(x) = x for all x ∈ X where e is the identity element of G

ii) ϕg ◦ ϕh = ϕg∗h for any g, h ∈ G

The inverse transformation ϕ−1
g is given by the action of the inverse group element — i.e.,

ϕ−1
g = ϕg−1 . The Lie group G is said to act freely on X if ϕg(x) = x implies g is the identity

element, e. The collection {ϕg}g∈G is called a transformation group. It is a group in the
sense that it satisfies the four group axioms.2 The G-orbit of a point x ∈ X is the set

OrbG(x) = {ϕg(x) | g ∈ G}

An invariant is a map I : X → R such that I ◦ ϕg = I for all g ∈ G. Suppose the smooth
map between manifolds γ : X →M induces the transformation ψ : G×M→M. The map
γ is called equivariant with respect to ϕ and ψ if

γ(ϕg(x)) = ψg(γ(x)) for all x ∈ X

For the special case illustrated in Figure 2.2, where M = G and ψg : h ↦→ h ∗ g−1, the map
γ is called equivariant if

γ(ϕg(x)) = γ(x) ∗ g−1 (2.4)
This is the statement of equivariance that will be used in Chapter 3 for the purpose of
observer design.

With an understanding of how a Lie group G acts on a smooth manifold X , we can examine
how vector fields on X change (or don’t change) under the Lie group action. Consider a set
U on which the Lie group G also acts via the map ψg : u ∈ U ↦→ ψg(u) ∈ U . The maps ϕ
and ψ define a transformation group on X × U . The dynamical control system ẋ = f(x, u)
is called G-invariant if

f(ϕg(x), ψg(u)) = Txϕg
(︁
f(x, u)

)︁
(2.5)

as depicted in Figure 2.3.
2A group is a set together with a binary operation that satisfies the four group axioms of closure, asso-

ciativity, the existence of an identity, and the existence of an inverse.
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x

ϕg(x)

γ(x)

γ(ϕg(x)) = γ(x) ∗ g−1

X G

γ

γ

ϕg (·) ∗ g−1

Figure 2.2: Equivariance

X

x ϕg(x)
TxX

Tϕg(x)X
f(x, u)

f(ϕg(x), ψg(u))
= Txϕg

(︁
f(x, u)

)︁

ϕg

Figure 2.3: Tangent vectors of an invariant control system

As an example, consider the general linear group GL(n,R), represented by n × n invertible
matrices. SupposeA ∈ GL(n,R) acts on the phase space, Rn×Rn, of a canonical Hamiltonian
system via the map ϕA : (q,p) ↦→ (Aq,A−Tp) =: (Q,P ). Under this transformation,
Hamilton’s equations [︃

q̇
ṗ

]︃
=

[︃
0 I
−I 0

]︃
⏞ ⏟⏟ ⏞

J

[︃
∇qH(q,p)
∇pH(q,p)

]︃
(2.6)

simply become [︃
Q̇

Ṗ

]︃
=

[︃
0 I
−I 0

]︃ [︃
∇QH̄(Q,P )
∇P H̄(Q,P )

]︃
(2.7)

where H̄(Q,P ) = H(q,p). The symmetry exemplified by Eqs. (2.6)–(2.7) is a consequence
of the fact that the Jacobian matrix

M := ∂ϕA =

[︃
A 0
0 A−T

]︃
satisfies the relation

MJMT = J

Referring to general statement (2.5) of invariance, the Hamiltonian system (2.6) is invariant
with respect to the transformation group {ϕA}A∈GL(n,R), where the tangent map T(q,p)ϕA
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is equal to the Jacobian M = ∂ϕA. In fact, ϕA is a particular example of a canonical
transformation (or symplectic transformation)

(Q,P ) = φ(q,p) such that ∂φ ∈ Sp(2n,R)

where Sp(2n,R) = {M ∈ R2n×2n |MJMT = J} is the symplectic group.3

2.4 Rigid-Body Aircraft Equations of Motion
A motivating example of a dynamical control system defined on a smooth manifold is the
forced rigid body — the system considered throughout this dissertation. Let the orthonor-
mal vectors {i1, i2, i3} define an earth-fixed North-East-Down (NED) reference frame, FI,
which we take to be inertial over the time and space scales of motion considered. Let the
orthonormal vectors {b1, b2, b3} define the body-fixed frame, FB, centered at the aircraft’s
center of gravity (CG), with b1 pointing out the front of the aircraft, b2 pointing out the
right-hand side, and b3 pointing downward to complete a right-handed frame. The position
of the body frame with respect to the inertial frame is given by the vector q = [x y z]T ∈ R3.
The attitude of the aircraft is described by the rotation matrix RIB that maps free vectors
from FB to FI. The matrix RIB is an element of the special orthogonal group,

SO(3) = {R ∈ R3×3 | R−1 = RT, detR = 1}

with the Lie group action being matrix multiplication.

The aircraft’s configuration is described by points η = (q,RIB) in the special Euclidean
group,

SE(3) = R3 ⋊ SO(3)

where ⋊ is the semi-direct product, which expresses how two elements of the group compose
a new element [69, §9.6]. The Lie groups SO(3) and SE(3) are not just groups, but also
smooth manifolds, meaning that we can define coordinate charts on the rigid-body configu-
ration space as discussed in Section 2.2. For example, the roll-pitch-yaw Euler angles are a
common local parameterization φ(RIB) ∈ V = {(ϕ, θ, ψ) ∈ R3 | |θ| ̸= π

2
} of the open subset

U = {R ∈ SO(3) | |R31| ̸= 0}, where R31 is the 3,1-element of the rotation matrix R.

Let vI = [vx vy vz]
T denote the time derivative of the aircraft’s position q. The vector vI

is the inertial velocity of the aircraft, expressed in the inertial frame. In the body frame,
v = [u v w]T = RT

IBvI is the translational velocity of the aircraft with respect to FI expressed
in FB. Thus, the translational kinematics may be written as

q̇ = RIBv (2.8)

Geometrically, q̇ ∈ TqR3 ∼= R3 for any q ∈ R3, where ∼= denotes an isomorphism.
3For a geometric treatment of symplectic transformations on Hamiltonian systems, see the text by Mars-

den and Ratiu [102].
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Turning to rotational motion, differentiating the identity RT
IBRIB = I reveals that RT

IBṘIB
is skew-symmetric and that (trivially by the associativity of matrix multiplication)

ṘIB = RIB(R
T
IBṘIB)

Let S(ω) := RT
IBṘIB where S(·) is the skew-symmetric cross product equivalent matrix

satisfying S(a)b = a×b for 3-vectors a and b. Let S−1(·) denote the inverse mapping; that
is, S−1(S(a)) = a ∈ R3. It can be shown that ω = [p q r]T ∈ R3 is the angular velocity of
FB with respect to FI, expressed in FB. Thus,

ṘIB = RIBS(ω) (2.9)

are the rotational kinematics of the rigid body. The matrix S(ω) is an element of the Lie al-
gebra4 so(3) — the tangent space to the identity element, TeSO(3), with matrix commutation
as the Lie bracket. We will sometimes write ω ∈ so(3) for compactness since so(3) ∼= R3.

Let ν = (v,ω) ∈ se(3) ∼= R6 be the generalized velocity of the rigid body. Putting together
the translational kinematics (2.8) and rotational kinematics (2.9), the aircraft kinematics
are written compactly as

η̇ = fη(η,ν) (2.10)
which are defined on the tangent bundle TSE(3). For each generalized velocity ν in the
Lie algebra se(3), the vector field fη maps configurations η ∈ SE(3) to tangent vectors in
TνSE(3). Thus, rigid-body motion can be viewed as a curve on SE(3) with velocity vectors
living in corresponding tangent spaces TνSE(3), evolving under the rule defined by the vector
field fη.

The rigid-body dynamics may be derived using Newton’s second law of motion (e.g., Etkin
[40, Ch. 5]) or through a Lagrangian or Hamiltonian formalism (e.g., Goldstein [53, Ch. 5]).
For a geometric perspective on the Hamiltonian dynamics of the free rigid body, the interested
reader is directed to the text by Marsden and Ratiu [102, Ch. 15]. In either case, let F andM
respectively denote the aerodynamic force and moment acting at the aircraft CG, expressed
in FB. Let g be the gravitational acceleration in FI. Suppose the aircraft’s mass m is
constant, and let I denote the moment of inertia matrix about the CG, expressed in FB.
Altogether, the aircraft dynamics are

v̇ = v × ω +RT
IBg +

1

m
F (2.11)

ω̇ = I−1(Iω × ω +M) (2.12)

Defining the generalized mass matrix M = diag(mI, I) and the generalized force F =
[F T MT]T, the aircraft dynamics are written compactly as

ν̇ = fν(η,ν) + M−1F (2.13)
4A Lie algebra g is a vector space equipped with a bilinear, skew-symmetric operation [·, ·] : g × g → g,

called the Lie bracket, that satisfies the Jacobi identity, [[u, v], w]+[[w, u], v]+[[v, w], u] = 0 for all u, v, w ∈ g.
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A geometric interpretation of Eq. (2.13) is as follows. The vector field fν maps the 12-
dimensional manifold TSE(3) to its tangent bundle, T

(︁
TSE(3)

)︁
. Since T(η,ν)

(︁
TSE(3)

)︁
is a

vector space, the addition of the generalized specific force M−1F to yield the aircraft’s
generalized body-frame acceleration ν̇ is well-defined.

Altogether, the rigid-body aircraft equations of motion are

q̇ = RIBv

ṘIB = RIBS(ω)

v̇ = v × ω +RT
IBg +

1

m
F

ω̇ = I−1(Iω × ω +M )

(2.14)

with state x = (q,RIB,v,ω). We will use the notation (a, b) as shorthand for [aT bT]T if
a and b are column vectors. More generally, (a, b) denotes a point in the product space
whose component subspaces are where a and b live, respectively. So, for example, the second
element of x lives in SO(3). Referring to Eqs. (2.10) and (2.13), we will sometimes compactly
write Eq. (2.14) as

η̇ = fη(η,ν)

ν̇ = fν(η,ν) + M−1F
(2.15)

explicitly breaking the system (2.14) up into kinematics and dynamics.

2.5 Lyapunov Stability Theory
Motivated by the design and stability analysis of nonlinear observers, this section lays out the
preliminaries on stability for time-varying nonlinear systems. The definitions and sufficient
conditions here are largely based on the text by Khalil [86]. The focus is stability of equilibria
for nonlinear dynamical systems defined on open subsets of Rn. For a geometric treatment
of stability through the perspective of Section 2.2, see the text by Bullo and Lewis [28].

This dissertation is mainly focused on proving stability of the origin of a state estimation
error system whose state is the difference between a state estimate and the true state. Thus,
any control inputs to the nonlinear system may appear in these error dynamics. Accordingly,
consider the nonlinear dynamical system

ẋ = f(x,w) (2.16)

where x(t) ∈ X ⊂ Rn is the state vector and w(t) ∈ W is a known input. The signal w is
an element of the space

W[0,∞) := {ω | ω : [0,∞)→W}
Assume f is locally Lipschitz in x on X ×W so that solutions x(t) are well-defined. Without
loss of generality, consider the initial time to be t0 = 0 and the origin x = 0 to be an
equilibrium — that is, f(0,w) = 0 for all w ∈ W[0,∞).
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To state the definitions of stability for this class of system, the function spaces K and KL
of comparison functions are defined as follows. A continuous function α : [0, a) → [0,∞) is
class-K if it is strictly increasing and α(0) = 0. It is class-K∞ if a = ∞ and α(y) → ∞ as
y → ∞. A continuous function β : [0, a) × [0,∞) → [0,∞) is class-KL if for each fixed τ ,
β(y, τ) is class-K and for each fixed y, β(y, τ) is decreasing and β(y, τ)→ 0 as τ →∞.

The origin x = 0 of the system (2.16) is

(i) stable uniformly in w if there exist a class-K function α and a constant r > 0 such
that

∥x(t)∥ ≤ α(∥x(0)∥) (2.17)

for all t ≥ 0, ∥x(0)∥ < r, and w ∈ W[0,∞).

(ii) asymptotically stable uniformly in w if there exist a class-KL function β and a constant
r > 0 such that

∥x(t)∥ ≤ β(∥x(0)∥, t) (2.18)

for all t ≥ 0, ∥x(0)∥ < r, and w ∈ W[0,∞).

(iii) globally asymptotically stable uniformly in w if Eq. (2.18) holds for all t ≥ 0, x(0) ∈ X ,
and w ∈ W[0,∞).

(iv) exponentially stable uniformly in w if it is asymptotically stable uniformly in w with
β satisfying

β(r, s) = kre−γs (2.19)

for constants k, γ > 0;

(v) globally exponentially stable uniformly in w if it is globally asymptotically stable uni-
formly in w with β satisfying Eq. (2.19).

Lyapunov stability theory is concerned with determining sufficient conditions for the types
of stability listed above. The origin x = 0 is uniformly stable in the compact subset D ⊂ X
containing the origin if there exist a continuously differentiable function V : D× [0,∞)→ R
and positive definite5 functions W1(x) and W2(x) on D such that

W1(x) ≤ V (x, t) ≤ W2(x) (2.20)
∂V

∂t
+
∂V

∂x
f(x,w) ≤ 0 (2.21)

for all t ∈ [0,∞), x ∈ D, and w ∈ W[0,∞). The origin x = 0 is uniformly asymptotically
stable in D if V further satisfies

∂V

∂t
+
∂V

∂x
f(x,w) ≤ −W3(x) (2.22)

5A function W (x) is positive definite (denoted W (x) ≻ 0) on a subset D ⊂ X if W (0) = 0 and W (x) > 0
for all x ∈ D \ {0}.
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for some positive definite function W3(x). Furthermore, the origin is uniformly exponentially
stable in D if

W1(x) = k1∥x∥a, W2(x) = k2∥x∥a, and W3(x) = k3∥x∥a (2.23)

for positive constants k1, k2, k3 and a. The above conditions are sufficient for their respective
global versions of stability if D = X and V is radially unbounded — that is, V (x, t) → ∞
as ∥x∥ → ∞ for all t ∈ [0,∞).

2.6 Probability Theory
This section is based on the works of Durrett [38], Arguin [8], and Evans [42].

Stochastic systems are defined on probability spaces, which we introduce as follows. Consider
an abstract set of outcomes Ω, called the sample space. This language is motivated by the
aim to quantify how likely subsets of the sample space (called events) occur. However, not
every collection of subsets of Ω makes sense. There can be infinitely many “bad” subsets for
a given problem. To formalize what are considered “good” collections of events, a σ-algebra
is defined to be a collection F of subsets of Ω such that

(i) F contains both the empty set ∅ and the entire sample space Ω;

(ii) if a subset A is in F , then so is its complement Ac;

(iii) all countable unions and intersections of subsets Ai ∈ F are in F .

Most common is the Borel σ-algebra Bn, which is the collection of all intersections and unions
of open and closed subsets, respectively, of Rn. Given a sample space Ω and a σ-algebra F ,
the pair (Ω,F) is a measurable space. Once a measure P is assigned to (Ω,F), the triple
(Ω,F ,P) is called a measure space.6 A probability space is simply a measure space whose
measure satisfies the following three axioms:

(i) P(A) ∈ [0, 1] for all A ∈ F .

(ii) P(∅) = 0 and P(Ω) = 1.

(iii) P is additive. That is, for any sequence of disjoint (mutually exclusive) events
A1, A2, . . . ,

P(A1 ∪ A2 ∪ · · · ) = P(A1) + P(A2) + · · ·

In this case, the measure P is called a probability measure. Altogether, the triple (Ω,F ,P)
is a called probability space. It is said an event A ∈ F occurs almost surely if P(A) = 1 and
that two events A,B ∈ F are independent if P(A ∪ B) = P(A)P(B). Two sub-σ-algebras
A,B ⊂ F are independent if all events A ∈ A and B ∈ B are independent.

6For an introduction to measure theory, see the text by Tao [143].
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Often, elements of the sample space Ω do not have concrete meaning nor are we interested
in their particular values. Instead, we are generally interested in the consequence of these
outcomes. Consider two measurable spaces (Ω,F) and (X ,A). The map X : Ω → X is
called a random variable if X is F -measurable. That is, for all events A ∈ A,

{ω ∈ Ω |X(ω) ∈ A} =X−1(A) ∈ F

We also say that
σ(X) = {X−1(B) | B ∈ Bn} (2.24)

is the σ-algebra generated by X. It is the smallest σ-algebra on which X is measurable. In
the common case that X = Rn, we have σ(X) = Bn. If a probability measure is assigned to
the measurable space (Ω,F) on which a Rn-valued random variable X(ω) is defined, then
the distribution of that random variable is uniquely defined. The distribution function of X
is the function FX : Rn → [0, 1] given by

FX(x) = P({X ≤ x}) (2.25)

for all x ∈ Rn, where {X ≤ x} denotes the event {ω ∈ Ω | X(ω) ≤ x}. In the special case
that FX is Lebesgue-continuous (that is, P(N) = 0 for every set N of Lebesgue measure
zero), then FX has a density function f that uniquely satisfies

FX(x1, . . . , xn) =

∫︂ xn

−∞
· · ·
∫︂ x1

−∞
f(x1, . . . , xn) dx1 · · · dxn (2.26)

Consider a X -valued random variableX on a probability space (Ω,F ,P). The expected value
of X is defined as

E(X) :=

∫︂
Ω

X(ω) dP(ω) (2.27)

In the special (yet often-considered) case that X = Rn and the distribution function is
Lebesgue-continuous with density f , we have

E(X) =

∫︂
Rn

xf(x) dx (2.28)

as the familiar statement of the expected value.

A X -valued random process on a probability space (Ω,F ,P) is an infinite sequence of random
variables

X = {Xt | t ∈ T}

where T may be discrete (e.g., T = N) or continuous (e.g., T = [0,∞)). One may view
random processes as sequences of random variables; that is, Xt(·) is a random variable for
each fixed t ∈ T. Or equivalently, X(·)(ω) is a function on T for each fixed ω ∈ Ω and is
called a sample path. We will often use the notation X(t, ω) to emphasize the functional
dependence on both t and ω.
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The most fundamental continuous-time random process is the Wiener process. As a math-
ematical representation of Brownian motion, it is the continuous-time limit of a random
walk. More formally, a Rn-valued random process W = [W 1 · · · W n]T is a standard Wiener
process if

(i) W (0) = 0 almost surely;

(ii) W i(t)−W i(s) ∼ N (0, t− s) for all t ≥ s ≥ 0 for each i = 1, . . . , n;7

(iii) the increments W i(t1)−W i(0), W i(t2)−W i(t1), · · · , W i(tm)−W i(tm−1) are indepen-
dent for all 0 < t1 < t2 < · · · < tm for each i = 1, . . . , n and any tm;

(iv) the σ-algebras σ({W i(t) | t ≥ 0}), i = 1, . . . , n, are independent.

We identify almost all ω ∈ Ω with a continuous function W(·)(ω) : [0,∞)→ Rn. Therefore,
in this dissertation we will always consider the probability space defined by

Ω = C([0,∞),Rn) ≡ space of Rn-valued continuous functions on [0,∞)

F = B(C([0,∞),Rn)) ≡ Borel sigma algebra on C([0,∞),Rn)

P = Gaussian probability measure satisfying items (i)–(iv) above

on which the random process Wt(ω) = ω(t) is defined.

Remark 2.1. The Wiener process has non-zero quadratic variation

[W ]t := lim
|P |→0

m−1∑︂
k=0

(W (tk+1)−W (tk))
2 = t

where P = {0 < t1 < t2 < · · · < t} is a partition of size |P | := max{tk+1 − tk | k =
0, . . . ,m− 1}.

Although the Wiener process W is almost surely continuous, it is almost surely nowhere
differentiable in the classical sense. However, it does admit a distributional derivative, which
defines continuous-time white noise [10, Ch. 3]. Loosely, this means the distribution of
Ẇ exists in some sense even though the derivative of each sample path does not. This
perspective comes from the theory of generalized random processes, where randomness is
understood through how the process acts on smooth functions.

Let ϕ ∈ C∞ be a test function (i.e., a smooth function with compact support). The Wiener
process W can be viewed as a generalized random process through

Φ(ϕ) =

∫︂ ∞

0

ϕ(t)W (t) dt

which defines a (random) linear functional on the space of test functions.8 In this framework,
7that is, sampled from a Gaussian distribution with mean zero and variance t− s.
8As described by Arnold [10], generalized random processes can be interpreted physically by considering

how sensors inherently average over time, thus never measuring pointwise values but instead integrals against
smooth functions.
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the mean and covariance of W are given by

m(ϕ) := E (Φ(ϕ)) = 0

C(ϕ, ψ) := E
(︁
(Φ(ϕ)−m(ϕ))(Φ(ψ)−m(ψ))

)︁
=

∫︂ ∞

0

∫︂ ∞

0

ϕ(t)ψ(s)min(t, s) dt ds

The distributional derivative Φ̇ is defined by the relation

Φ̇(ϕ) = −Φ(ϕ̇) =⇒
∫︂ ∞

0

ϕ(t)Ẇ (t) dt = −
∫︂ ∞

0

ϕ̇(t)W (t) dt

Therefore, the mean and covariance of the generalized random process Φ̇(ϕ) are

ṁ(ϕ) := E
(︁
Φ̇(ϕ)

)︁
= −

∫︂ ∞

0

ϕ̇(t)E (W (t)) dt = 0 (2.29)

and

Ċ(ϕ, ψ) := E
(︁
Φ̇(ϕ)Φ̇(ψ)

)︁
=

∫︂ ∞

0

∫︂ ∞

0

ϕ̇(t)ψ̇(s)E
(︁
W (t)W (s)

)︁
dt ds

=

∫︂ ∞

0

∫︂ ∞

0

ϕ̇(t)ψ̇(s)min(t, s) dt ds

=

∫︂ ∞

0

∫︂ ∞

0

ϕ(t)ψ(s)δ(t− s) dt ds (2.30)

Through the lens of generalized random processes, Eqs. (2.29) and (2.30) express the familiar
characterization of white noise as a zero-mean process with covariance given by the Dirac
delta function δ(t− s).

2.7 Itô Calculus and Stochastic Differential Equations
This section introduces “how calculus is done” with the Wiener process. It is largely based
on material by Arnold [10] and Evans [42] with additional inspiration from Øksendal [121]
and Pavliotis [125].

A random process G : [0,∞)×Ω on the probability space (Ω,F ,P) is called non-anticipating
ifG(t) is measurable with respect to the σ-algebra Ft = σ({G(s) | s ≤ t}). A random process
Ḡ is called a step process if there exists a partition P = {0 < t1 < t2 < · · · < tm = T} such
that

Ḡ(t) ≡ Ḡk for all tk ≤ t < tk+1 (k = 0, 1, . . . ,m− 1)

The Itô integral of a non-anticipating step process Ḡ with respect to the Wiener process W
is ∫︂ T

0

ḠdW =
m−1∑︂
k=0

Ḡk(W (tk+1)−W (tk))
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More generally, consider a random process G approximated by a sequence of non-anticipating
step processes {Ḡj | j = 1, . . . ,m}; that is,

lim
m→∞

∫︂ T

0

∥G(t)− Ḡm(t)∥2 dt = 0 almost surely

The Itô integral of G with respect to the Wiener process W is∫︂ T

0

GdW =

∫︂ T

0

G(t)dWt = lim
m→∞

∫︂ T

0

ḠmdW (2.31)

The construction of this integral is very similar to the Riemann–Stieltjes integral with the
difference being that the intermediate value of the integrand in a Riemann sum approxima-
tion is not arbitrary; rather, it is taken as the initial point G(tk) so that the result is also
non-anticipating. For example, the integral∫︂ t

0

WdW =
W 2

2
− t

2

would not be well-defined in the deterministic setting.

Due in part to the fact that the Wiener process has non-zero quadratic variation (see Re-
mark 2.1), the usual chain rule of calculus does not hold. Consider a random process X that
satisfies

Xt =X0 +

∫︂ t

0

f(t)dt+
∫︂ t

0

G(s)dWs (2.32)

The first integral is the usual integral, but the second is understood in the sense of Itô. This
equation is often written in differential form as

dX = fdt+GdW

However, the “differential” dX is always to be interpreted as shorthand for the integral
equation (2.32). It was shown by Itô that for a standard Wiener process W ,

d(W 2) = 2WdW + dt
d(tW ) = Wdt+ tdW

To illustrate the consequence of this fact, consider the scalar case where dX = fdt+ σdW ,
and let Y = h(t,X). It holds that

dY =
∂h

∂t
dt+ ∂h

∂X
dX +

1

2

∂2h

∂X2
(dX)2

=

(︃
∂h

∂t
+
∂h

∂X
f +

1

2

∂2h

∂X2
σ2

)︃
dt+ ∂h

∂X
σdW
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Notice that without the Hessian ∂2h/∂X2, we would have the chain rule or ordinary calculus.

In higher dimensions, differentials of Y = h(t,X) satisfy Itô’s lemma (also, Itô’s rule or
Itô’s formula),

dY =

(︃
∂h

∂t
+

∂h

∂X
f +

1

2
Tr
[︃
∂2h

∂X2
σσT

]︃)︃
dt+ ∂h

∂X
σdW (2.33)

which generalizes the chain rule to functions of random processes (2.32).

More generally, we consider random processes Xt satisfying

Xt =X0 +

∫︂ t

0

f(Xs, s)ds+
∫︂ t

0

σ(Xs, s)dWs (2.34)

where f : Rn × [0,∞) → Rn is the drift vector field, σ : Rn × [0,∞) → Rn×m is the
diffusion (or dispersion) matrix field, and W is a Rm-valued standard Wiener process on
the probability space (Ω,F ,P). The random process (2.34) is known as a strong solution to
the stochastic differential equation (SDE)

dXt = f(Xt, t)dt+ σ(Xt, t)dWt (2.35)

provided that for all t ∈ [0,∞),

(i) Xt is almost surely continuous and Ft-measurable;

(ii) ft := f(Xt, t) satisfies E(∥ft∥) <∞;

(iii) σt := σ(Xt, t) satisfies E(∥σt∥2) <∞;

(iv) Xt(ω) =X0(ω) +

∫︂ t

0

f(Xs(ω), s)ds+
∫︂ t

0

σ(Xs(ω), s)dWs(ω) for almost all ω ∈ Ω.

We now give two simple examples of stochastic differential equations. The scalar SDE

dXt = aXtdt+ bXtdWt

has the unique strong solution

Xt(ω) = X0(ω)e
(a−b2/2)t+bWt(ω)

which is known as geometric Brownian motion. Another common example is the Langevin
equation,

dXt = AXtdt+ σdWt

which has the unique strong solution

Xt(ω) = eAtX0(ω) +

∫︂ t

0

eA(t−s)σdWs(ω)
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called the Ornstein-Uhlenbeck process.

A core concept in analysis of stochastic differential equations is how probability densities
change over time. This motivates the definition of a linear operator called the infinitesimal
generator L of the random process Xt. Exactly how L defines the evolution of probability
densities is beyond the scope of this dissertation;9 instead, we focus on the fact that the
infinitesimal generator also defines the expected rate-of-change of a function. More formally,

L V (x, t) = lim
t↘0

E (V (Xt, t)|X0 = x)− V (x, t)

t

for any bounded V : Rn × [0,∞). If V is twice differentiable in its first argument and once
differentiable in its second argument (that is, an element of C(2,1)), then

L V (x, t) =
∂V (x, t)

∂t
+
∂V (x, t)

∂x
f(x, t) +

1

2
Tr
(︃
σ(x, t)σT(x, t)

∂2V (x, t)

∂x2

)︃
(2.36)

In light of Section 2.5, the choice of function “V ” is deliberate. In stochastic stability analysis
(soon detailed in Section�2.8), L V is indeed analogous to V̇ (which represented the rate of
change of a Lyapunov function in Section 2.5) in the deterministic case.

Like with ordinary differential equations, we often wish to numerically construct solutions
to SDEs. It is important that these solutions are not only accurate in their sample paths,
but also probabilistically accurate. Consider the SDE

dXt = f(Xt)dt+ σ(Xt)dWt

and a time discretization {0 = t0 < t1 < · · · < tN = T}. For fixed ω ∈ Ω, denote

∆tk := tk+1 − tk
xk :=Xtk(ω)

∆wk :=Wtk+1
(ω)−Wtk(ω)

The discrete-time approximation

xk+1 − xk = f(xk)∆tk + σ(xk)∆wk

is called the Euler-Maruyama method (akin to the Euler method for ODEs). The key here
is that

∆wk ∼ N (0,∆tkI)
To obtain higher-order approximations to solutions Xt one can perform Taylor series-like
expansions to incorporate higher-order effects. Here, however, we must be careful to respect
the laws of Itô calculus. In doing so one realizes that standard Runge-Kutta numerical
methods do not hold for stochastic differential equations.10

9The interested reader is directed to the text by Pavliotis [125].
10See the text by Kloeden and Platen [89] for a thorough treatment of numerical methods for SDEs.
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2.8 Stability of Stochastic Differential Equations
This section presents prerequisite notions of stochastic stability with Lyapunov-like sufficient
conditions. Consider the SDE

dX = f(X, t)dt+G(X, t)σ(t)dW (2.37)

where σσT is the infinitesimal covariance of the scaled Wiener process σW and the usual
conditions on f and G hold so that strong solutions almost surely starting from x0 ∈ Rn

are well-defined. In this section, we make a distinction between the random process X(t)
and its sample paths x(t) =Xt(ω) for fixed ω ∈ Ω.

First, suppose the origin is a true equilibrium, meaning f(0, t) = 0 and G(0, t) = 0 for all
t ∈ [t0,∞). In this case, we say the noise vanishes at the origin. The following preliminaries
for this class of system are based on the works of Khasminskii [88] and Arnold [10]. The
origin of the SDE (2.37) is said to be

(i) stable in probability if

lim
∥x0∥→0

P
{︂

sup
t∈[t0,∞)

∥X(t)∥ > ϵ
}︂
= 0 (2.38)

(ii) asymptotically stable in probability if

lim
∥x0∥→0

P
{︂

lim
t→∞

X(t) = 0
}︂
= 1 (2.39)

(iii) asymptotically stable in the large if

P
{︂

lim
t→∞

X(t) = 0
}︂
= 1 (2.40)

for all x0 ∈ Rn.

Like with deterministic systems, we can state Lyapunov sufficient conditions for these notions
of stochastic stability. Consider a function V ∈ C(2,1), V : Rn × [0,∞). Suppose there exist
positive definite functions W1(x) and W2(x) on a compact subset D ⊂ Rn such that

W1(x) ≤ V (x, t) ≤ W2(x) (2.41)
L V (x, t) ≤ 0 (2.42)

for all t ∈ [0,∞) and x ∈ D. The origin is asymptotically stable in probability if V further
satisfies

L V (x, t) ≤ −W3(x) (2.43)

for some positive definite function W3(x) on D. The origin is asymptotically stable in the
large if D = Rn and V is radially unbounded.
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For many systems, however, noise does not vanish at the origin. In other words, the fact
that G(0, t) ̸= 0 means one cannot apply the above notions of stochastic stability. In
this dissertation, we consider the particular perspective of noise-to-state stability (NSS) as
presented by Mateos-Núñez and Cortés [103], which is a statement on the probabilistic
convergence of the state to some ultimate bound whose size depends on the magnitude of
the driving noise. The SDE (2.37) is noise-to-state stable if for any ϵ ∈ (0, 1] there exist a
class-K function α and a class-KL function β such that

P
{︃
∥X(t)∥p > β(∥x0∥, t− t0) + α

(︂
ess sup
s∈[t0,t)

∥σ(s)∥F

)︂}︃
≤ ϵ (2.44)

for some integer p > 0. Here, ∥ · ∥F denotes the Frobenius norm. The system is pth moment
noise-to-state stable if there exist a class-K function α and a class-KL function β such that

E
(︁
∥X(t)∥p

)︁
≤ β(∥x0∥, t− t0) + α

(︂
ess sup
s∈[t0,t)

∥σ(s)∥F

)︂
(2.45)

If there exist an integer p > 0, a C2 Lyapunov function V (x), a continuous positive definite
function W (x), class K∞ functions α1, α2, and a class-K function ρ such that for all x ∈ Rn

and t ∈ [t0,∞),

α1(∥x∥p) ≤ V (x) ≤ α2(∥x∥p) (2.46)
L V (x, t) ≤ −W (x) + ρ(∥σ(t)∥F) (2.47)

where
V (x) ≤ α3(W (x)) (2.48)

for some concave class-K∞ function α3, then the system is noise-to-state stable in probability.
Specifically, for any ϵ ∈ (0, 1],

P

{︄
∥X(t)∥p > α−1

1

(︃
2

ϵ
µ
(︂
α2

(︁
∥x0∥p

)︁
, t
)︂)︃

+ α−1
1

(︃
2

ϵ
α3

(︂
2ρ
(︁

ess sup
s∈[t0,t)

∥σ(s)∥F
)︁)︂)︃}︄

≤ ϵ (2.49)

where the class-KL function µ(a, τ) is defined by the unique solution y(t) to the ODE

dy
dτ

= −1

2
α−1
3

(︁
y(τ)

)︁
, y(0) = a (2.50)

Furthermore, if α1 is convex, then the system is pth moment noise-to-state stable in proba-
bility such that

E
(︁
∥X(t)∥p

)︁
≤ α−1

1

(︃
2µ
(︂
α2

(︁
∥x0∥p

)︁
, t
)︂)︃

+ α−1
1

(︃
2α3

(︂
2ρ
(︁

ess sup
s∈[t0,t)

∥σ(s)∥F
)︁)︂)︃

(2.51)

The above convexity conditions are not required in Lyapunov stability theorems for deter-
ministic systems but are needed here to leverage Jensen’s inequality, stating that any convex
function α of a random variable X satisfies α(E(X)) ≤ E(α(X)) [26, Ch. 3].



Chapter 3

Symmetry-Preserving Reduced-Order
Observers

3.1 Introduction

Methods for designing state observers for nonlinear systems are limited, and there are no
general techniques that guarantee global convergence of the estimation error as there are in
the linear case [130, Ch. 15]. Provably effective state estimation strategies are inevitably
limited to special classes of systems. Here, we leverage symmetries in a dynamical system’s
structure to aid observer design and stability analysis.

As seen in Chapter 2, symmetries are described by the invariance of a system under a Lie
group’s action. From a Lagrangian perspective, Aghannan and Rouchon [2] leveraged the
symmetry inherent in the coordinate-free Euler-Lagrange equations to design a nonlinear ob-
server given measurements of the system’s configuration. This idea of leveraging symmetries
in the dynamics was generalized by Bonnabel et al. to include general nonlinear systems
under a Lie group’s action [24] as well as systems defined on Lie groups [22]. Thus was laid
the foundation for the invariant extended Kalman filter [23], which was shown by Barrau
and Bonnabel [20] to be a stable observer. From a closely-related but unique perspective,
Mahony et al. [100] developed a nonlinear observer for kinematic systems with complete
symmetry — that is, systems defined on homogeneous spaces. This work was generalized by
Van Goor et al. [150] with the equivariant Kalman filter, which applies to general equivariant
systems.

Existing approaches to symmetry-preserving observers only consider the full-order case,
however, in which the entire state of the system is estimated. In many scenarios, part of
the system’s state may be known with negligible error or may be obtained as the output
of an observer whose design is independent of the rest of the system’s state. For example,
attitude observers for aircraft or spacecraft often do not rely on the rigid body’s translational
dynamics (e.g., Lefferts et al. [94] and Mahony et al. [99]). Another example is the problem
of wind estimation from aircraft motion (e.g., González-Rocha et al. [56] and Chen et al.
[32]), where the main goal is to obtain estimates of wind and air-relative velocity — not to re-
estimate the aircraft’s position, attitude, and angular velocity. More generally, the problem
of disturbance estimation falls into this category where the internal state of the system is
known but the disturbance is not (e.g., Chen and Woolsey [33]). In these scenarios, reduced-

24
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order observers, in the sense of Karagiannis and Astolfi [84] and Astolfi et al. [12], are of
particular interest where only the unmeasured part of the system’s state is estimated. The
aim of observer design is to render a particular set, characterized by zero state estimation
error, positively invariant and globally asymptotically attractive.

This chapter is based on reference [70] and presents a reduced-order observer that is also
symmetry-preserving. As detailed in Section 3.2, the state space is separated into measured
and unmeasured parts, with the measured part of the state being defined on a smooth
manifold. Considering a system that is invariant under the action of a Lie group G, the
notion of a moving frame [101], [122] is described in Section 3.3. The moving frame is
used as the primary tool to construct a symmetry-preserving reduced-order pre-observer1 in
Section 3.4. The equivariance of the moving frame is leveraged to construct an equivariant
map from measurements to the observer’s state space. This property is used to prove the
dynamics of the state estimate are also invariant under the Lie group’s action. Section 3.5
details how this equivariance is further leveraged to find sufficient conditions for the pre-
observer to be a stable observer. An application of the observer to rigid body velocity
estimation is presented in Section 3.6.

3.2 Problem Statement
Consider a system whose state is given by an unmeasured part, x ∈ X ⊂ Rn, and a measured
part, y ∈ Y . Here, X is an open subset of Rn containing the origin and Y is a p-dimensional
smooth manifold. The dynamics of this system are given by

ẋ = f(x,y,u) (3.1a)
ẏ = h(x,y,u) (3.1b)

where u ∈ U is the known “input” to the system. It is not necessarily just composed of
control inputs, but rather is a known signal on which a particular Lie group acts. Here,
the dynamics of the measured part of the state, y, may be expressed intrinsically, that is,
without specifying a local coordinate chart.

In the language of Karagiannis and Astolfi [84], the dynamical system

ż = α(z,y,u) (3.2)

where z ∈ Rq(≥n), is called a (global) reduced-order observer for x if there exists a smooth
manifold

Z = {(x,y, z) ∈ X × Y × Rq | θ(z,y) = φ(x,y)} (3.3)
defined by smooth mappings θ and φ that are left invertible with respect to their first
argument, such that Z is positively invariant and (globally) asymptotically attractive. The
estimate of x is then given by

x̂ = φ(L,·)(θ(z,y),y) (3.4)
1Briefly, a pre-observer is an observer for which there is not (yet) any claim about error convergence.
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where φ(L,·) denotes the functional left inverse of φ with respect to its first argument — i.e.,
φ(L,·)(φ(x,y),y) = x.

Our aim is to construct the vector field α and mappings φ and θ by leveraging symmetries in
the dynamics (3.1). Therefore, we consider systems of the form (3.1) that possess symmetries;
that is, they are invariant under a Lie group’s action.

Assumption 3.1. The system (3.1) is G-invariant with respect to the transformation group
{(ϕg(x),ϱg(y),ψg(u))}g∈G, where G is an r-dimensional Lie group and ϕg(x) is linear in x.

This assumption implies that

Txϕg
(︁
f(x,y,u)

)︁
= f(ϕg(x),ϱg(y),ψg(u)) (3.5)

Tyϱg
(︁
h(x,y,u)

)︁
= h(ϕg(x),ϱg(y),ψg(u)) (3.6)

in reference to Section 2.3.

3.3 The Moving Frame
Similar to Bonnabel et al. [24], the primary tool which we use to construct a reduced-order
observer for systems (3.1) satisfying Assumption 3.1 is the moving frame [122]. In the words
of Mansfield and Zhao [101], the moving frame aims at the following:

“Given the Lie group action, derive the invariants and their relationships algo-
rithmically, that is, without prior knowledge of 100 years of differential geometry,
and with minimal effort.”

The moving frame is intimately tied to how G-orbits relate to the composition of Lie group
actions. For the observer considered here, we only need to consider the transformation on
the measured part of the state, ϱg(y). Therefore, it is sufficient to consider a moving frame
to be a mapping γ : Y → G that has the equivariance property (2.4), now written in terms
of the measured part of the state as

γ(ϱg(y)) ∗ g = γ(y) (3.7)

As illustrated in Figure 3.1, a moving frame is a map γ : Y → G that has the equivariance
property (2.4). It may be associated with a (p − r)-dimensional coordinate cross-section K
that transversely intersects G-orbits on Y .

We construct a moving frame according to the methods presented by Olver [122], which
are also given in tutorial format by Mansfield and Zhao [101]. Suppose the r-dimensional
Lie group G acts freely on the p-dimensional manifold Y ; that is, ϱg(y) = y implies g is
the identity element, e. For fixed y ∈ Y , the map ϱ(·)(y) : G → Y is non-surjective, only
mapping to points on the G-orbit of y (the red dashed line in Figure 3.1). However, one can
identify the r-dimensional part ϱ̄(·)(y) of the map ϱ(·)(y) that is invertible (i.e., bijective).
As depicted in Figure 3.1, one can select a constant k in the image of ϱ̄ that defines the
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y

ϱg(y)

γ(y)

γ(ϱg(y))

ϱ̄γ(y)(y) = k ϱγ(y)(y)

Y

G

K

G-orbit of y

ϱg

ϱγ

γ

(·) ∗ g

Figure 3.1: Equivariance of the moving frame γ and its construction via the cross-section K

unique point at which the G-orbit of a generic point y intersects the (p − r)-dimensional
cross-section

K = {y ∈ Y | ϱ̄e(y) = k}
In other words, the moving frame is obtained by solving the normalization equation

ϱ̄h(y) = k (3.8)

for h ∈ G. The solution h = γ(y) defines the moving frame γ : Y → G.

3.4 Invariant Reduced-Order Pre-Observer
It can now be described what it means for a reduced-order observer to be symmetry-
preserving under the transformation group considered in Assumption 3.1. We postulate
the form of an observer for the unmeasured part of the state, x, that preserves invariance of
the state estimate dynamics. Inspired by Bonnabel et al. [24] and Karagiannis and Astolfi
[84], consider the following definition.

Definition 3.1 (G-invariant reduced-order pre-observer). The dynamical system

ż = α(z,y,u) (3.9)

with output
x̂ = z + β(y) (3.10)

for some smooth map β : Y → X is a G-invariant reduced-order pre-observer if the system

̇̂x = α(x̂− β(y),y,u) + Tyβ
(︁
h(x,y,u)

)︁
(3.11)
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is G-invariant and the manifold

Z = {(z,x,y) ∈ X × X × Y | z = x− β(y)} (3.12)

is positively invariant. A G-invariant pre-observer is a G-invariant observer if Z is asymp-
totically attractive.

This prescription of the zero-error manifold Z is not quite as general as the case described
by Astolfi et al. [12]. We instead consider the condition that defines Z to be linear in z and
x (and for z to be the same dimension as x). In other words, we choose θ(z,y) = z and
φ(x,y) = x− β(y) in Eq. (3.3). This simplification reveals an intuitive choice for β in the
following lemma based on the underlying geometry.

Lemma 3.1. Suppose there exists a moving frame γ : Y → G that only depends on y ∈ Y,
and let ℓ : Y → X be a smooth map (called the gain map). If

β(y) = ϕγ(y)−1

(︂
ℓ
(︁
ϱγ(y)(y)

)︁)︂
(3.13)

then the following commutative identities (illustrated in Figure 3.2) hold for all g ∈ G and
y ∈ Y:

β(ϱg(y)) = ϕg(β(y)) (3.14)

Tϱg(y)β ◦ Tyϱg = Tβ(y)ϕg ◦ Tyβ (3.15)

In other words, β commutes with the transformation group.

y
ϱg(y)

β(y)

β(ϱg(y)) = ϕg(β(y))

Y

X

β Tyβ
β Tϱg(y)β

ϱg

Tyϱg

ϕg

Tβ(y)ϕg

Figure 3.2: Commutative relationship between β and the transformation group
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Proof. Beginning with the definition of β, we have

β(ϱg(y)) = ϕγ(ϱg(y))−1

(︂
ℓ
(︁
ϱγ(ϱg(y))(ϱg(y))

)︁)︂
By the equivariance property (2.4) of the moving frame,

β(ϱg(y)) = ϕ(γ∗g−1)−1

(︂
ℓ
(︁
ϱγ∗g−1(ϱg(y))

)︁)︂
Using the composition properties for group elements and group actions,

β(ϱg(y)) = ϕg∗γ−1

(︂
ℓ
(︁
ϱγ∗g−1∗g(y)

)︁)︂
= ϕg

(︂
ϕγ−1

(︁
ℓ
(︁
ϱγ(y)

)︁)︁)︂
= ϕg(β(y))

Finally, (3.15) follows directly from the properties of the tangent map.

Using Lemma 3.1, a G-invariant pre-observer is readily constructed for a system satisfying
Assumption 3.1.

Theorem 3.1. Suppose Assumption 3.1 and the conditions of Lemma 3.1 hold. Let the
vector field α(·,y,u) : X → TX be defined by

α(z,y,u) = f(z + β(y),y,u)− Tyβ
(︁
h(z + β(y),y,u)

)︁
(3.16)

Then, the dynamical system
ż = α(z,y,u) (3.17)

with output
x̂ = z + β(y) (3.18)

is a G-invariant, reduced-order pre-observer.

Proof. We begin by showing invariance of the state estimate dynamics (3.11). Define

F (x̂,x,y,u) = α(x̂− β(y),y,u) + Tyβ
(︁
h(x,y,u)

)︁
Then,

Tx̂ϕg
(︁
F (x̂,x,y,u)

)︁
= Tx̂ϕg

(︁
f(x̂,y,u)

)︁
−
(︁
Tx̂ϕg ◦ Tyβ

)︁(︁
h(x̂,y,u)− h(x,y,u)

)︁
The assumed linearity of ϕg implies Txϕg does not depend on the choice of base point x.
Therefore, Tx̂ϕg = Tβ(y)ϕg, and Lemma 3.1 can be used along with the invariance of f to
obtain

Tx̂ϕg
(︁
F (x̂,x,y,u)

)︁
= f(ϕg(x̂),ϱg(y),ψg(u))−

(︁
Tϱg(y)β ◦Tyϱg

)︁(︁
h(x̂,y,u)− h(x,y,u)

)︁
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Since h is also G-invariant, we have

Tx̂ϕg
(︁
F (x̂,x,y,u)

)︁
= f(ϕg(x̂),ϱg(y),ψg(u))

− Tϱg(y)β
(︁
h(ϕg(x̂),ϱg(y),ψg(u))− h(ϕg(x),ϱg(y),ψg(u))

)︁
By Lemma 3.1, recognize that

ϕg(x̂) = ϕg(z) + β(ϱg(y))

Then, it follows that

Tx̂ϕg
(︁
F (x̂,x,y,u)

)︁
= α(ϕg(x̂)− β(ϱg(y)),ϱg(y),ψg(u))

+ Tϱg(y)β
(︁
h(ϕg(x),ϱg(y),ψg(u))

)︁
Therefore,

Tx̂ϕg
(︁
F (x̂,x,y,u)

)︁
= F (ϕg(x̂),ϕg(x),ϱg(y),ψg(u))

That is, the system (3.16)–(3.18) is G-invariant. Next, we show the zero error manifold Z
given in (3.12) is positively invariant. Since z − x+ β(y) = 0 on Z, we verify that

α(x− β(y),y,u)− f(x,y,u) + Tyβ
(︁
h(x,y,u)

)︁
= f(x,y,u)− Tyβ

(︁
h(x,y,u)

)︁
− f(x,y,u) + Tyβ

(︁
h(x,y,u)

)︁
= 0

Thus, referring to (3.17), trajectories originating in Z remain in Z. It follows
that (3.16)-(3.18) is a G-invariant reduced-order pre-observer.

As an improvement over the general reduced-order observer described in Section 3.2, Theo-
rem 3.1 leverages symmetry to construct a reduced-order pre-observer. The functions θ, φ,
and α in Eqs. (3.2)–(3.4) are formulated using the moving frame γ. The equivariance of the
moving frame is the key property that makes this pre-observer G-invariant.

3.5 Invariant Reduced-Order Observer
We now aim to find sufficient conditions for the pre-observer in Theorem 3.1 to be a G-
invariant reduced-order observer. That is, we seek conditions under which Z is asymptoti-
cally attractive. Like Bonnabel et al. [24], consider error coordinates that are G-invariant.
Specifically, take

η(z,x,y) = ϕγ(y)(z) + ℓ(ϱγ(y)(y))−ϕγ(y)(x) (3.19)

The invariant coordinates η are non-zero if and only if (z,x,y) /∈ Z. Thus, η → 0 as t→∞
implies Z is asymptotically attractive. Let X = ϕγ(y)(x), Y = ϱγ(y)(y), and U = ψγ(y)(u).
Using the moving frame to define these transformed points means (X,Y ,U ) constitutes
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a complete set of invariants [122, Ch. 8]. As will be shown shortly, the stability of the
pre-observer (3.17) depends only on η and the invariants X, Y , and Z (see Remark 3.1).

To derive sufficient conditions for asymptotic stability, we will make use of the following
result.

Lemma 3.2. Let λ : Y → X be the map

λ(y; ξ) = ϕγ(y)(ξ)

where ξ ∈ X is held constant. Then,

T(y;ϕg−1 (ζ))λ
(︁
h(x,y,u)

)︁
= T(ϱg(y);ζ)λ

(︁
h(ϕg(x),ϱg(y),ψg(u))

)︁
(3.20)

for any g ∈ G and ζ ∈ X .

The following proof of Lemma 3.2 is illustrated in Figure 3.3.

(y,ϕg−1(ζ))

ϕγ(y)(ϕg−1(ζ)) = ϕγ(ϱg(y))(ζ)

(ϱg(y), ζ)

Y(×X )

X

h(x,y,u) h(ϕg(x),ϱg(y),ψg(u))

Eq. (3.20)

λ(· ;ϕg−1(ζ)) λ(· ; ζ)

(ϱg,ϕg)

Figure 3.3: Invariance of λ and its tangent map

Proof. First, we recognize λ is invariant since

λ(ϱg(y);ϕg(ξ)) = ϕγ(ϱg(y))(ϕg(ξ))

= ϕγ(y)∗g−1(ϕg(ξ))

= ϕγ(y)(ξ)

= λ(y; ξ)
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for any ξ ∈ X , where we again use the equivariance of the moving frame γ. Therefore,

λ(y;ϕg−1(ζ)) = λ(ϱg(y); ζ)

for any ζ ∈ X . Since λ(ϱg(y); ζ) is a composition of maps, it follows that

T(y;ϕg−1 (ζ))λ = T(ϱg(y);ζ)λ ◦ Tyϱg

Applying this tangent map to the G-invariant vector field h, we obtain

T(y;ϕg−1 (ζ))λ
(︁
h(x,y,u)

)︁
=
(︁
T(ϱg(y);ζ)λ ◦ Tyϱg

)︁(︁
h(x,y,u)

)︁
= T(ϱg(y);ζ)λ

(︁
h(ϕg(x),ϱg(y),ψg(u))

)︁
which verifies Eq. (3.20).

Finally, sufficient conditions for (3.17) to be a G-invariant reduced-order observer are given
as follows.

Theorem 3.2. Suppose the assumptions of Theorem 3.1 hold. The G-invariant pre-
observer (3.17) is a G-invariant observer if the origin η = 0 of the invariant error system

η̇ = f(X + η,Y ,U )− f(X,Y ,U )

− TY β
(︁
h(X + η,Y ,U)− h(X,Y ,U)

)︁
+ T(Y ;η)λ

(︁
h(X,Y ,U)

)︁
(3.21)

is asymptotically stable uniformly in X, Y , and U .

Proof. By definition, the pre-observer (3.17) is an observer if the zero error manifold Z is
positively invariant and asymptotically attractive or, equivalently, if the state estimation
error dynamics have a globally asymptotically stable equilibrium at the origin η = 0. It
remains for us to show that the estimation error dynamics are given by the invariant error
system (3.21). Since ϕg(x) is linear in x, we can write

η = ϕγ(y)(z + β(y))−ϕγ(y)(x)

Thus, the time derivative of η satisfies

η̇ = T(z+β(y))ϕγ(y)

(︂
α(z,y,u) + Tyβ

(︁
h(x,y,u)

)︁)︂
− Txϕγ(y)

(︁
f(x,y,u)

)︁
+ T(y;z+β(y)−x)λ

(︁
h(x,y,u)

)︁
Substituting the definition of α from Theorem 3.1 and again using the linearity of ϕg(·), we
have

η̇ = T(z+β(y))ϕγ(y)
(︁
f(z + β(y),y,u)

)︁
− Txϕγ(y)

(︁
f(x,y,u)

)︁
−
(︁
Tβ(y)ϕγ(y) ◦ Tyβ

)︁(︁
h(z + β(y),y,u)− h(x,y,u)

)︁
+ T(y;z+β(y)−x)λ

(︁
h(x,y,u)

)︁
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Applying the invariance of f and h through the use of Lemma 3.1 yields

η̇ = f
(︁
ϕγ(y)(z + β(y)),Y ,U

)︁
− f

(︁
X,Y ,U

)︁
− TY β

(︂
h
(︁
ϕγ(y)(z + β(y)),Y ,U

)︁
− h

(︁
X,Y ,U

)︁)︂
+ T(y;z+β(y)−x)λ

(︁
h(x,y,u)

)︁
Notice the last term in the above equation can also be written as

T(y;ϕγ(y)−1 (η))λ
(︁
h(x,y,u)

)︁
Therefore, we can use Lemma 3.2 along with a substitution of

z = ϕγ(y)−1(η)− β(y) + x

to obtain Eq. (3.21).

Theorem 3.2 states sufficient conditions for the reduced-order pre-observer constructed in
Theorem 3.1 to be an asymptotically stable observer. In particular, the error system (3.21) is
G-invariant, meaning stability can be equivalently analyzed under arbitrary transformation
by the Lie group’s action.

Remark 3.1. The error system (3.21) depends only on the invariant error η and the in-
variants X, Y , and U , which can be reduced to a set of n+ p− r functionally independent
invariants, I(x,y,u) [122, Ch. 8]. This observation is consistent with the full-order case
considered by Bonnabel et al. [24, Theorem 3].

3.6 Example: Rigid-Body Velocity Observer
Consider a rigid aircraft instrumented with an accelerometer, gyroscope, magnetometer,
and GNSS receiver such that its position q and attitude rotation matrix RIB are known
without error. Furthermore, assume the angular velocity ω and body-frame specific force a
(obtained from filtered accelerometer readings) are available as inputs for the observer design.
However, suppose that the body velocity v is not directly measured. The aim is to design a
reduced-order velocity observer for the system

v̇⏞⏟⏟⏞
ẋ

= v × ω +RT
IBg + a⏞ ⏟⏟ ⏞

f(x,y,u)(︃
q̇

ṘIB

)︃
⏞ ⏟⏟ ⏞

ẏ

=

(︃
RIBv

RIBS(ω)

)︃
⏞ ⏟⏟ ⏞

h(x,y,u)

(3.22)
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Proposition 3.1. The system (3.22) is SO(3)-invariant with respect to the transformation
group {ϕg(x),ϱg(y),ψg(u)}g∈SO(3) defined by

ϕg(x) = Rgv, ϱg(y) =

(︃
q

RIBR
T
g

)︃
, ψg(u) =

(︃
Rgω
Rga

)︃
where Rg denotes the element g ∈ G for G = SO(3).

Proof. We have

Txϕg
(︁
f(x,y,u)

)︁
= Rg(v × ω) +RgR

T
IBg +Rga

= Rgv ×Rgω + (RIBR
T
g )

Tg +Rga

= f(ϕg(x),ϱg(y),ψg(u))

and

Tyϱg
(︁
h(x,y,u)

)︁
=

(︃
RIBv

RIBS(ω)R
T
g

)︃
=

(︃
RIBR

T
gRgv

RIBR
T
gS(Rgω)

)︃
= h(ϕg(x),ϱg(y),ψg(u))

Here, we have used the property that S(Rξ) = RS(ξ)RT for anyR ∈ SO(3) and ξ ∈ R3.

Since RIB is an element of the Lie group G, the moving frame is simply

γ(y) = RIB

Because the transformation group is also linear in the measured part of the state, we can
choose the gain map ℓ to be

ℓ(y) = Lq

where L ∈ R3×3 is a tuning parameter. Therefore, Eq. (3.13) states that

β(y) = RT
IBLq

Applying Theorem 3.1, we have

α(z,x,y) = (z +RT
IBLq)× ω +RT

IBg + a⏞ ⏟⏟ ⏞
f(z+β(y),y,u)

+S(ω)RT
IBLq −RT

IBLRIB(z +RT
IBLq)⏞ ⏟⏟ ⏞

−Tyβ(h(z+β(y),y,u))

with the estimate of v given by
v̂ = z +RT

IBLq
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The sufficient condition given in Theorem 3.2 reduces to the requirement that the origin of
the system

η̇ = −Lη
is asymptotically stable. Therefore, if (−L) is Hurwitz, then the pre-observer ż = α(z,y,u)
is a globally exponentially stable, reduced-order, SO(3)-invariant observer.

As a numerical example, consider the maneuvering flight trajectory shown in Figure 3.4.
For the initial condition v̂(0) = 0 and gain matrix L = 10I, the time history of velocity
estimates is shown in Figure 3.5. To stress the observer, we also include noisy measurements
of y and u. Specifically, suppose

yq = q +wq uω = ω +wω

yRIB = RIB exp(S(wRIB)) ua = a+wa

where wq, wRIB , wω, and wa are zero-mean, Gaussian, continuous-time, “white noise” with
power spectral densities 5× 10−4I m2

Hz , 10−7I 1
Hz , 10−5I (rad/s)2

Hz , and 2× 10−2I (m/s2)2
Hz , respec-

tively. Figure 3.6 shows the velocity estimates when y and u are corrupted by a realization
of these random processes. The results shown in Figure 3.6 are indicative of the observer’s
inherent robustness to disturbances, as expected from the fact that the undisturbed invariant
error system is globally exponentially stable.

Figure 3.4: Maneuvering aircraft

Remark 3.2. Proving stochastic stability for this example is beyond the scope of this dis-
sertation since the noisy rotation matrix measurements multiply noisy position and angular
velocity measurements. Therefore, the error dynamics would not be a stochastic differential
equation as defined in Chapter 2, but rather something more general.
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Figure 3.5: Velocity estimates
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Figure 3.6: Velocity estimates with noisy measurements and inputs

This rigid‑body velocity estimation example highlights the key advantage of a symmetry-
preserving reduced‑order observer; exploiting the system’s symmetry simplifies the state-
estimation error dynamics. In particular, Theorem 3.2 states that stability analysis of the
invariant error system can be equivalently conducted under any transformation on the system
as defined by the transformation group. The key result that enables this simplification is
that the observer map β commutes with the transformation group — a property that arises
from the equivariance of the moving frame. While not shown here, the application of this
model-free approach (that is, no aerodynamic model) to flight in wind yields a linear error
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system that is not stabilizable. Therefore, the extension of this example to wind estimation
requires the use of an aerodynamic model instead of using accelerometer measurements.



Chapter 4

Nonlinear Flight Dynamic Modeling
for Multirotor Aircraft

The nonlinear observer presented in Chapter 3 constitutes a method for obtaining provably
accurate state estimates across the entire state space. These guarantees, however, are only as
good as the system model. For aircraft, this means an aerodynamic model must be accurate
across the full range of operating conditions in order to reap the benefits of a nonlinear
observer. Much progress has been made in large-domain fixed-wing modeling; however,
established methods for formulating and identifying large-domain multirotor flight dynamic
models are lacking. To address these gaps, the following two chapters detail multirotor
modeling and system identification methodologies that are applicable to general maneuvering
flight.

This chapter is based on reference [74]. The results presented here (especially Section 4.4) are
fruits of collaboration with Dr. Benjamin Simmons, Jared Cooper, and Dr. Craig Woolsey.

4.1 Introduction
Flight dynamic models for aircraft are often required for control, estimation, simulation, and
design. It can be useful to formulate such a model as a low-dimensional system of ordinary
differential equations to allow for direct use in control and estimation algorithms as well as
efficient simulation and design optimization [71], [77], [138]. In particular, we aim to obtain
a large-domain flight dynamic model for use in the model-based wind estimation schemes
detailed in Chapters 6–8. Higher-fidelity models based on computational or wind tunnel
data are not practical in such applications. Hence, this chapter details the development of
nonlinear, quasi-steady flight dynamic models for multirotor aircraft that strike a balance
between complexity and accuracy so that they may be identified from flight data and readily
employed for model-based control and estimator design.

In general, there is no standard structure for compact, finite-dimensional models for full-
envelope multirotor aircraft flight, though efforts have been made for fixed-wing aircraft [60],
[113], [135]. Large-domain modeling for multirotor aircraft is especially challenging due to
complex inflow conditions [127], unsteady effects [105], and aerodynamic interactions [19].
Therefore, typical approaches to multirotor modeling for the purposes of control and estima-
tion involve identifying linear state space models in the time domain or low-order transfer

38



4.1. Introduction 39

functions in the frequency domain [3], [37], [78], [119], [120], [152]. While these approaches
enable a multitude of control and estimation approaches, incorporating an aerodynamic
model that is more accurate over a broader envelope can yield stronger guarantees on safety
and performance.

Approaches to expand the range of flight conditions for which a model accurately describes
multirotor motion include stitched linear models [54], linear force and moment models for
the otherwise nonlinear system [134], nonlinear aerodynamic models for a reduced number
of degrees-of-freedom by assuming symmetry [15], and polynomial-based regressor determi-
nation using stepwise regression [142]. These models are valid across a wider range of flight
conditions than linear flight dynamic models; however, broader applicability may still be
obtained through physics-based modeling. Such an approach often begins with the aerody-
namics of a single rotor, superposing these effects for multiple rotors to obtain a final model
structure [14], [27], [37]. A model that is valid within a larger domain, accurately capturing
nonlinear dynamic and aerodynamic phenomena, may be required for applications of inter-
est. For example, the recent growth in urban air mobility has spawned novel vertical takeoff
and landing vehicle designs, motivating physics-based, analytical models such as the one
detailed by Nguyen and Webb [118]. While these models describe the complex phenomena
driving the vehicle motion, they require a high-dimensional system representation, making
identification and control difficult. Thus, there remains a middle ground to be explored —
one in which a physics-based, nonlinear, quasi-steady flight dynamic model can be identified
from flight data.

Accordingly, this chapter presents a nonlinear, quasi-steady multirotor aerodynamic model
that is accurate over a wider range of flight conditions than typical control-oriented models,
yet simpler to identify and use for model-based control and estimation than models that
interpolate extensive archives of experimental or computational data. Similar to Fay [43],
the approach presented here begins with the force and moment generated by a single rotor in
forward flight, derived using blade-element theory and momentum theory. Using this result,
unknown constants are lumped together to obtain force and moment expressions for a single
rotor, which are then incorporated into the force and moment acting on the multirotor
aircraft. The resulting nonlinear model is broadly applicable and is in a form amenable to
identification from experimental data. Recognizing that simpler models may still be useful
in some applications, a set of reasonable assumptions are presented to simplify the model
structure and make the parameter identification problem even easier.

To evaluate the effectiveness of the postulated multirotor model structure, a simulation
study was conducted using a high-fidelity multirotor aerodynamic model derived from wind
tunnel data [68]. A statistically designed test matrix was developed to facilitate accurate
identification of the model terms in each model structure [106], [117]. The models are
assessed using prediction error metrics and comparisons of the model predictions to the
known simulation database, which reveals the advantages and limitations of each modeling
approach. Through these results, the relative importance of model terms was evaluated
across a large domain of interest.
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The remainder of this chapter is based on Hopwood et al. [74] and is organized as follows.
Section 4.2 derives lumped-parameter expressions for the aerodynamic force and moment
acting on a single rotor in forward flight using blade-element and momentum theory. The
result is used in Section 4.3 to formulate the total force and moment for a rotating and trans-
lating multirotor aircraft. Section 4.4 describes the simulation study, followed by modeling
results presented in Section 4.5.

4.2 Rotor Aerodynamics
In this chapter, we aim to model the aerodynamic force F and moment M acting on a
multirotor aircraft. That is, a model is formulated for F and M in the rigid body equations
of motion (2.14) in a way that captures the propulsion physics accurately enough to support
effective model-based design of nonlinear control and estimation schemes, but simply enough
to allow straightforward model parameter estimation. We aim to derive a model for the
aerodynamic force and moment as a function of the vehicle’s states, where the propulsors
are assumed to be fixed-pitch, rigid rotors for simplicity. The aerodynamics of these rotors
serve as the building block that will define the aerodynamic force and moment acting on the
multirotor aircraft.

Consider an Nb-blade rotor of radius R rotating about its spin axis at the rate Ω rad
s that is

also steadily translating through still air with velocity v and airspeed V = ∥v∥.

Assumption 4.1. The blade-element loads are steady, depending only on the the transla-
tional velocity of the rotor hub and the rotor rotational speed.

In other words, the effect of rotor angular velocity orthogonal to the shaft on the blade
element angle-of-attack is neglected. The farther the rotor hubs lie from the aircraft’s CG,
the less the vehicle’s angular velocity influences blade element loads relative to its transla-
tional velocity. Consequently, Assumption 4.1 is well justified for many multirotor vehicles.
Note, however, that the vehicle’s angular velocity ω is not entirely ignored; as detailed in
Section 4.3, it will be used to compute the rotor hub’s local translational velocity, thereby
yielding a quasi-steady aerodynamic model.

To simplify the discussion of rotor aerodynamics, we assume for the time being that the
“aircraft” comprises a single rotor located at the origin of the body frame with the rotor
spin axis aligned with b3. Referring to Figure 4.1, let orthonormal vectors {r1, r2, r3} define
a reference frame centered at the rotor hub such that

a) r3 = −b3;

b) if ∥v∥ > 0, then v lies in the r1-r3 plane such that rT
1 v > 0;

c) if ∥v∥ = 0, then r1 = b1;

d) r2 completes a right-handed frame.
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The rotor frame is defined similar to the wind frame for fixed-wing aircraft in the sense that
the frame axes are defined by the air-relative velocity vector. The rotor frame is related to
the body frame by the transformation1

RBR =

⎡⎣ cos βf − sin βf 0
− sin βf − cos βf 0

0 0 1

⎤⎦ (4.1)

where βf is the angle from r1 to b1, measured about the r3 axis. In the rotor frame, the
velocity of the rotor hub is ṽ = [vx 0 vz]

T, where vz is the rotor ascent speed and vx is the
rotor-plane airspeed. Referring to Figure 4.1, for a non-rotating body frame (ω = 0), the
rotation matrix RBR defines the relations⎡⎣uv

w

⎤⎦ = RBRṽ =

⎡⎣ vx cos βf
−vx sin βf
−vz

⎤⎦ (4.2)

and ⎡⎣vx0
vz

⎤⎦ = RT
BRv =

⎡⎣ u cos βf − v sin βf
−u sin βf − v cos βf

−w

⎤⎦ (4.3)

By the definition of the rotor frame, vx also satisfies

vx =
√
u2 + v2 ≥ 0 (4.4)

Figure 4.1 depicts the relationship between the body and rotor frames along with the re-
spective components of the velocity vector, v, in this special case where we have assumed
the rotor hub coincides with the aircraft CG. In Figure 4.1, v is depicted with u < 0, v > 0,
and w < 0. Also note in this case that vz > 0 and βf > 0.

The non-dimensional horizontal advance ratio is

µx =
vx
ΩR

(4.5)

In a similar manner, the total inflow ratio is

λ =
ν + vz
ΩR

(4.6)

where ν is the induced rotor inflow velocity (positive in the b3 direction). For the pur-
pose of rotor force and moment derivation, consider the following assumption on the rotor
aerodynamics.

1Note that RBR is not a proper rotation matrix.
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Figure 4.1: Rotor frame geometry

Assumption 4.2. The rotor blades

a) are rigid (no flapping);

b) do not stall;

c) have linear twist: θ(r) = θ0 + θtwr, where r is the non-dimensional radial station along
the blade measured from the hub;

d) do not interact with the wake of upstream blades.

Consider the thrust T , hub force H, side force S, rolling moment R, pitching moment P ,
and torque Q on the isolated rotor shown in Figure 4.2. Due to Assumptions 4.2a and 4.2d,
the rotor-frame side force, S, and pitching moment, P , are zero [83, Ch. 5].

As detailed by Johnson [83, Chs. 4 and 5], the rotor loads can be obtained by integrating
the force and moment acting on an infinitesimal element of the rotor blade. It is convenient
to express these quantities as the non-dimensional coefficients,

CH =
H

ρπR4Ω2
CT =

T

ρπR4Ω2

CR =
R

ρπR5Ω2
CQ =

Q
ρπR5Ω2

(4.7)

where ρ is the air density. Denote the constant lift curve slope of a blade element as a
and its mean drag coefficient as c̄d (computed at r =

√
2/2). The rotor force and moment
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Figure 4.2: Isolated rotor force and moment

coefficients are given as

CH = −Nbc̄a

2πR

[︃
1

2a
c̄dµx +

(︃
θ0
2
+
θtw

4

)︃
λµx

]︃
(4.8a)

CT =
Nbc̄a

2πR

[︃
θ0
3

(︃
1 +

3

2
µ2
x

)︃
+
θtw

4

(︁
1 + µ2

x

)︁
− λ

2

]︃
(4.8b)

CR = −Nbc̄a

2πR

[︃
θ0
3
+
θtw

4
− λ

4

]︃
µx (4.8c)

CQ = −Nbc̄a

2πR

[︃
c̄d
4a

(︁
1 + µ2

x

)︁
+

(︃
θ0
3
+
θtw

4
− λ

2

)︃
λ

]︃
(4.8d)

These coefficients are similarly derived by Fay [43] and Cooper et al. [36] as applied to
multirotor vehicles.

An expression is still needed for the inflow ratio λ. From momentum theory [95, Ch. 2], the
inflow velocity in hover is

ν0 =

√︃
mg

2ρAr
(4.9)

where Ar is the total rotor disk area of the aircraft. However, we are interested in the
more general forward flight condition where the steady, uniform inflow velocity is implicitly
defined by

ν =
ν20√︁

v2x + (ν + vz)2
(4.10)

To simplify the dependence on vx and vz, we choose to linearly approximate the curvy surface
defined by Eq. (4.10) with a plane in the ν-vx-vz space.
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Assumption 4.3. The rotor inflow velocity is steady and uniform, given by

ν = ν0 − Cνxvx − Cνzvz (4.11)

where ν0 is the hover inflow velocity given by Eq. (4.9).

Since the aim is to develop a model that is identifiable from experimental data, the values
for the positive constants Cνx and Cνz will be implicitly chosen to best fit the selected data.
An example of this fit for the small quadrotor considered by Foster and Hartman [44] is
illustrated in Figure 4.3, where the curvy surface defined by Eq. (4.10) is approximated by
the plane defined by Eq. (4.11).
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Figure 4.3: Steady inflow model (4.10) and the linear approximation (4.11)

Defining the hover inflow ratio µ0 =
ν0
ΩR

and vertical advance ratio µz = vz
ΩR

, the total inflow
ratio λ becomes

λ = µ0 − Cνxµx − (Cνz − 1)µz (4.12)
Let Cσ = Nbc̄a

2πR
, Cθ1 = θ0

3
+ θtw

4
, and Cθ2 = θ0

2
+ θtw

4
for compactness. The rotor coefficients in

Eq. (4.8) are expanded using Eq. (4.12) to obtain the non-dimensional rotor force coefficients,

CH = − 1

2a
Cσ c̄d⏞ ⏟⏟ ⏞

CHµx

µx − CσCθ2⏞ ⏟⏟ ⏞
CHµ0,µx

µxµ0 + CσCθ2Cνx⏞ ⏟⏟ ⏞
CH

µ2x

µ2
x + CσCθ2(Cνz − 1)⏞ ⏟⏟ ⏞

CHµx,µz

µxµz (4.13a)

CT = CσCθ1⏞ ⏟⏟ ⏞
CT0

− 1

2
Cσ⏞⏟⏟⏞

CTµ0

µ0 +
1

2
CσCνx⏞ ⏟⏟ ⏞
CTµx

µx + CσCθ2⏞ ⏟⏟ ⏞
CT

µ2
x

µ2
x +

1

2
Cσ(Cνz − 1)⏞ ⏟⏟ ⏞

CTµz

µz (4.13b)

and moment coefficients,

CR = −CσCθ1⏞ ⏟⏟ ⏞
CRµx

µx +
1

4
Cσ⏞⏟⏟⏞

CRµ0,µx

µxµ0 −
1

4
CσCνx⏞ ⏟⏟ ⏞
CR

µ2x

µ2
x −

1

4
Cσ(Cνz − 1)⏞ ⏟⏟ ⏞
CRµx,µz

µxµz (4.13c)
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CQ = − 1

4a
Cσ c̄d⏞ ⏟⏟ ⏞
CQ0

−CσCθ1⏞ ⏟⏟ ⏞
CQµ0

µ0 + CσCθ1Cνx⏞ ⏟⏟ ⏞
CQµx

µx + CσCθ1(Cνz − 1)⏞ ⏟⏟ ⏞
CQµz

µz

+
1

2
Cσ⏞⏟⏟⏞

CQ
µ20

µ2
0 − Cσ

(︃
c̄d
4a
−
C2
νx

2

)︃
⏞ ⏟⏟ ⏞

CQ
µ2x

µ2
x +

1

2
Cσ(Cνz − 1)2⏞ ⏟⏟ ⏞

CQ
µ2z

µ2
z − CσCνx⏞ ⏟⏟ ⏞

CQµ0,µx

µ0µx

− Cσ(Cνz − 1)⏞ ⏟⏟ ⏞
CQµ0,µz

µ0µz + CσCνx(Cνz − 1)⏞ ⏟⏟ ⏞
CQµx,µz

µxµz (4.13d)

Because the ultimate aim is to identify a flight dynamic model from experimental data,
constant parameters in Eq. (4.13) are lumped together to define a new set of parameters
which will appear in the final multirotor model. Notice Eq. (4.13) comprises second-order
polynomials of the advance ratios µx, µz, and µ0. Hence, we refer to the quadratic terms
(e.g., CH

µ2x
µ2
x) in the model as second-order effects.

Remark 4.1. The lumped rotor aerodynamic parameters in Eq. (4.13) are non-dimensional.

The rotor aerodynamic analysis presented here provides a physically motivated model struc-
ture, but specific coefficient values will be determined from data for the complete aircraft,
not from computations of the expressions above. Although the set of five base parameters
{Cσ, Cνx , Cνz , Cθ1 , Cθ2} could be used in the final model structure, we choose to decouple
these interdependent parameters (e.g., CT0 ̸= CRµx

) to better capture unmodeled effects and
potential violations of Assumption 4.2.

For the steadily translating rotor depicted in Figure 4.2, the isolated body-frame rotor force
Fr = [Xr Yr Zr]

T and moment Mr = [Lr Mr Nr]
T applied to the rotor hub satisfy

⎡⎣Xr
Yr
Zr

⎤⎦ =

⎡⎣ H cos βf
−H sin βf
−T

⎤⎦ and

⎡⎣ Lr
Mr
Nr

⎤⎦ =

⎡⎣ R cos βf
−R sin βf
−Q

⎤⎦ (4.14)

Using the re-dimensionalized lumped-parameter expressions (4.13) along with the velocity
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component relation in Eq. (4.2), we have the isolated rotor model

Xr = ρπR2
(︂
−CHµx

RΩu− CHµ0,µx
ν0u+ CH

µ2x
vxu− CHµx,µz

uw
)︂

(4.15a)

Yr = ρπR2
(︂
−CHµx

RΩv − CHµ0,µx
ν0v + CH

µ2x
vxv − CHµx,µz

vw
)︂

(4.15b)

Zr = ρπR2
(︂
−CT0R2Ω2 + CTµ0RΩν0 − CTµxRΩvx + CTµz

RΩw − CT
µ2x
v2x

)︂
(4.15c)

Lr = ρπR3
(︂
−CRµx

RΩu+ CRµ0,µx
ν0u− CR

µ2x
vxu+ CRµx,µz

uw
)︂

(4.15d)

Mr = ρπR3
(︂
−CRµx

RΩv + CRµ0,µx
ν0v − CR

µ2
x
vxv + CRµx,µz

vw
)︂

(4.15e)

Nr = ρπR3
(︂
CQ0R

2Ω2 + CQµ0
RΩν0 − CQµx

RΩvx + CQµz
RΩw − CQ

µ20

ν20

− CQ
µ2x
v2x − CQµ2

z
w2 + CQµ0,µx

ν0vx − CQµ0,µz
ν0w + CQµx,µz

vxw
)︂

(4.15f)

Equation (4.15) gives the components of the force and moment vectors, expressed in the
body frame, applied to the hub of an isolated rotor that is steadily translating in still air.
This model is adopted for the rotor aerodynamics of the multirotor aircraft considered in
Section 4.3, where we consider the effects of multiple rotors displaced from a translating and
rotating body frame.

4.3 Multirotor Forces and Moments
The rotor aerodynamic force and moment described in Eq. (4.15) are incomplete represen-
tations of the actual force and moment applied to the airframe. Here, we consider a number
of other factors that influence a given rotor’s effect on vehicle motion.

4.3.1 Motor Dynamics
Consider a motor fixed in space that is attached to the rotor depicted in Figure 4.2. While
there are many approaches to the electric propulsion of multirotor aircraft, we consider the
common assumption (also adopted by Cunningham and Hubbard [37] and Khan and Nahon
[87], for example) that the system comprising the motor and electronic speed controller
(ESC) is well-described by the DC motor model

Lm
dim
dt

+Rmim + kvΩ = vm (4.16a)

Jz
dΩ
dt

= Qm +Q (4.16b)

where Lm is the armature inductance, im is the armature current, Rm is the armature re-
sistance, kv is the back electro-magnetic force constant (often called the velocity constant),
vm is the voltage supplied to the motor, Jz is the moment of inertia of the motor and rotor
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rigid body about the r3 axis, Qm is the torque applied to the rotor about its spin axis by the
motor mounted to the airframe (a function of im and Ω), and Q is the aerodynamic torque
acting on the rotor about its spin axis. The motor model in Eq. (4.16) may be simplified
through use of the torque constant, kt, which is a proportional constant relating Qm to im.
Furthermore, the motor/ESC electrical dynamics evolve on a much faster time scale than
the mechanical motor speed dynamics so that the steady-state solution to Eq. (4.16a) may
be used to obtain

JzΩ̇ = −ktkv

Rm
Ω +

kt

Rm
vm +Q (4.17)

as corroborated by Cunningham and Hubbard [37].

Like Smeur et al. [138], we recognize that the motor dynamics influence the rigid body in
three dimensions. Consider the ith motor located at the point pi = [xi yi zi]

T in the body
frame. Let Ωi = [0 0 σiΩi]

T be its angular velocity vector with respect to the body frame,
expressed in the body frame, where σi ∈ {−1,+1} represents the rotor rotation direction
according to the right-hand rule in the body frame. Assuming the motor inertia Jz is much
smaller than the rigid-body moment of inertia about the b3 axis and that the magnitude of
the yaw rate is much less than the motor speed,

JΩ̇i = JΩi × ω −Mm,i +Mr,i (4.18)

where J = diag(Jx, Jy, Jz) is the moment of inertia matrix of the motor/rotor rigid body,
Mm,i is the moment applied to the airframe (hence the sign reversal compared to Eq. (4.16b)),
and

Mr,i = −σi

⎡⎣ Lr,i
Mr,i
Nr,i

⎤⎦ (4.19)

is the aerodynamic moment on the ith rotor expressed in the body frame. Equation (4.18)
constitutes one dynamical equation for the rotor spin rate — the third component of Ωi —
and two algebraic equations for the moments exerted by the motor on the airframe about the
non-spin axes — the first and second components of Mm,i. Here, as opposed to the isolated
rotor moment components in Eq. (4.15), the rotor aerodynamic moments are evaluated
at the velocities of the rotor hubs, vi, accounting for the body angular velocity ω. Like
Bannwarth et al. [15], we assume knowledge of Ω̇i so that an expression for Mm,i in terms of
motor parameters and/or electrical states is not needed. Instead, we rearrange and simplify
Eq. (4.18) to obtain the moment applied to the airframe by a single rotor,

Mm,i =Mr,i − σiJz

⎡⎣ qΩi

−pΩi

Ω̇i

⎤⎦ (4.20)

Equation (4.20) shows the relationship between the rotor aerodynamic moments derived in
Section 4.2 and the moment applied to the rigid body by a single rotor. The terms JzqΩi

and JzpΩi are the gyroscopic effects of the motor/rotor, and JzΩ̇i is net motor torque. The
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transmission of rotor aerodynamic forces is much simpler than that of the moments. The
aerodynamic force of the ith rotor applied to the airframe at the base of the motor is

Fm,i = Fr,i (4.21)

whose components are given by Eq. (4.15) evaluated using the local rotor velocity, vi. Equa-
tions (4.21) and (4.20) define the force and moment, respectively, applied by the ith motor
to the rigid airframe at its point of attachment.

4.3.2 Multirotor Aerodynamics
With an understanding of how forces and moments are transmitted to the airframe from
Section 4.3.1, and the individual rotor forces and moments developed in Section 4.2, we can
derive expressions for the total force and moment on a multirotor aircraft. Let the total
force and moment applied to the airframe be F = [Fx Fy Fz]

T and M = [Mx My Mz]
T,

respectively. Consider a multirotor aircraft whose configuration is defined by the following
assumptions.

Assumption 4.4.

a) The number of rotors, Nr ≥ 4, is even.

b) The rotors counter-rotate in an alternating fashion (i.e., neighboring rotors spin in
opposite directions).

c) The rotor configuration is symmetric about the b1 and b2 axes.

d) The rotor arms have equal length, ℓ, and are arranged with equal interior angles, 2π/Nr.

e) The rotors are uncanted (coplanar) and located at the same height, h = −zi, above the
center of gravity.

As an example, a quadrotor in a symmetric “X” configuration as pictured in Figure 4.4
satisfies Assumption 4.4. As it will be important for the final model, we define three classes
of configurations that satisfy Assumption 4.4.

Definition 4.1.

a) A quadrotor+ satisfies Assumption 4.4 with Nr = 4 and (xi, yi) = (0, ℓ) for some
i ∈ {1, 2, 3, 4}.

b) A quadrotor× satisfies Assumption 4.4 with Nr = 4 and (xi, yi) = (ℓ
√
2
2
, ℓ

√
2
2
) for

some i ∈ {1, 2, 3, 4}.

c) A multirotor≥6 satisfies Assumption 4.4 for Nr ≥ 6.

Remark 4.2. Although the following derivation considers the configuration in Assump-
tion 4.4, the same approach may be used for any other configuration of interest.
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Figure 4.4: Quadrotor geometry

To this point, we have not mentioned airframe-specific (rotor-independent) forces and mo-
ments. The form of such a drag model is non-standard due to the varied and complex
geometry of multirotor aircraft. Thus, experimentally-derived [35], [114] and/or simplified-
geometry models [18], [30] are considered. We assume the following.

Assumption 4.5. The airframe-specific aerodynamic force and moment are well-
approximated by empirically-derived expressions that depend on body-frame translational and
angular velocity.

In reality, the flow induced by the rotors interacts with the airframe as well as among the
rotors themselves. However, since these interaction effects are difficult to model [19], we
make the following assumption.

Assumption 4.6. The force and moment due to rotor-airframe and rotor-rotor interaction
is lumped into the airframe and rotor forces and moments.

As a consequence of Assumption 4.6, any rotor aerodynamic interactions will be expressed
in the model as either a decrease in thrust or an increase in rotor and airframe drag (in the
steady state, at least). Any unsteady effects of aerodynamic interactions are not captured
by the model.

Because the motors are assumed to be rigidly attached to the aircraft, the body frame force,
F , is equal to the total rotor aerodynamic force, Fr = [Xr Yr Zr]

T, plus the airframe
aerodynamic force, Fa = [Xa Ya Za]

T. Here, Fr and Mr denote the total rotor-derived force
and moment vectors applied to the aircraft as opposed to the isolated rotor force/moment
components considered in Eq. (4.15). Thus, we have

F = Fr + Fa =
Nr∑︂
i=1

Fr,i + Fa =
Nr∑︂
i=1

Fm,i + Fa (4.22)

As shown in Section 4.3.1, however, M is not simply equal to the airframe aerodynamic
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moment, Ma := [La Ma Na]
T, plus the total rotor aerodynamic moment,

Mr =
Nr∑︂
i=1

(Mr,i + pi × Fr,i) =:

⎡⎣ Lr
Mr
Nr

⎤⎦ (4.23)

Instead, referring to Eqs. (4.20) and (4.21),

M =
Nr∑︂
i=1

(Mm,i + pi × Fm,i) +Ma (4.24)

Alternatively, the total applied moment in Eq. (4.24) can be written using the total aerody-
namic moment in Eq. (4.23) as

M =Mr +Ma − Jz
Nr∑︂
i=1

σi

⎡⎣ qΩi

−pΩi

Ω̇i

⎤⎦ (4.25)

Furthermore, we must determine for each rotor the contribution of vehicle angular velocity to
the rotor aerodynamic force and moment. These forces and moments are defined in the body
frame whose origin does not coincide with the rotor hubs. Recalling from Assumption 4.4
that the rotors are not canted, i.e., the r1-r2 plane is parallel to the b1-b2 plane, the local
velocity of the ith rotor in the body frame is

vi = v + ω × pi (4.26)

Incorporating this correction yields a complicated model structure, making parameter esti-
mation from flight data difficult. To obtain a more compact and identifiable form, we make
the following assumption.

Assumption 4.7. When computing the local velocity for each rotor, the vehicle yaw rate,
r, and the vertical moment arm, h, can be neglected.

Assumption 4.7 reflects the expectation that the primary contribution of the vehicle angular
velocity to the rotor forces and moments is the resulting change in inflow velocity. Following
Assumption 4.7, we approximate the local velocity of the ith rotor as

vi ≈ v +

⎡⎣pq
0

⎤⎦×
⎡⎣xiyi
0

⎤⎦ =

⎡⎣ u
v

w + pyi − qxi

⎤⎦ (4.27)

Given the local rotor velocity approximation in Eq. (4.27), the next step is to express the
total force and moment in a form that simplifies control, analysis, and the design of excitation
signals for system identification. Rather than using individual rotor speeds as inputs, which
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can be cumbersome and less interpretable, we define a more compact representation using
virtual actuators, which are defined by the motor mixing formula

⎡⎢⎢⎣
δ2t
δ2a
δ2e
δ2r

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

δ2

:= Mix

⎡⎢⎢⎢⎣
Ω2

1

Ω2
2

...
Ω2
Nr

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Ω2

(4.28)

where Mix is determined by the geometry of the aircraft as follows:

Mix =

⎡⎢⎢⎣
1/Nr 1/Nr · · · 1/Nr
−y1 −y2 · · · −yNr

x1 x2 · · · xNr

−σ1 −σ2 · · · −σNr

⎤⎥⎥⎦ (4.29)

To capture first-order rotor speed terms, we also define

⎡⎢⎢⎣
δt
δa
δe
δr

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

δ

:= Mix

⎡⎢⎢⎢⎣
Ω1

Ω2
...

ΩNr

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Ω

(4.30)

In Eqs. (4.28) and (4.30), δ2 and δ serve as virtual actuators, providing a more compact
representation of control inputs; Ω2 and Ω are the column vectors of squared and positive
motor speeds, respectively. Specifically, δa, δe, δr, and δt represent virtual aileron, eleva-
tor, rudder, and thrust inputs. However, it is important to note that δ2 and δ are not
independently controlled.

Finally, the body frame forces and moments are obtained using Eqs. (4.22) and (4.25), where
Fr,i and Mr,i are evaluated at vi as defined in Eq. (4.27) and rotor speeds are replaced using
the virtual actuator definitions in Eqs. (4.28) and (4.30). As a result, we obtain the following
model.
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Model 1. The force and moment components for a multirotor aircraft satisfying Assump-
tion 4.4 are

Fx = ρπR2Nru
(︂
−CHµx

Rδt− CHµ0,µx
ν0 + CH

µ2x
vx − CHµx,µz

w
)︂
+Xa (4.31a)

Fy = ρπR2Nrv
(︂
−CHµx

Rδt− CHµ0,µx
ν0 + CH

µ2
x
vx − CHµx,µz

w
)︂
+ Ya (4.31b)

Fz = ρπR2
(︂
− CT0R2Nrδ

2t+ CTµ0RNrν0δt− CTµxRNrvxδt

+ CTµzR(Nrwδt−∆νZ)− CT
µ2x
Nrv

2
x

)︂
+ Za (4.31c)

Mx = ρπR2

(︃
− CRµx

R2uδr + CT0R
2δ2a− CTµ0Rν0δa+ CTµxRvxδa

− CTµzR
(︂
wδa−∆νL

)︂
− CHµx

RNrhvδt− CHµ0,µx
Nrhvν0

+ CH
µ2x
Nrhvvx − CHµx,µz

Nrhvw

)︃
+ La + Jzqδr (4.31d)

My = ρπR2

(︃
− CRµx

R2vδr + CT0R
2δ2e− CTµ0Rν0δe+ CTµxRvxδe

− CTµzR
(︂
wδe−∆νM

)︂
+ CHµx

RNrhuδt+ CHµ0,µx
Nrhuν0

− CH
µ2x
Nrhuvx + CHµx,µz

Nrhuw

)︃
+Ma − Jzpδr (4.31e)

Mz = ρπR2

(︃
CQ0R

3δ2r + CQµ0
R2ν0δr − CQµx

R2vxδr

+ CQµz
R2
(︂
wδr −∆νN

)︂
− CQ

µ2z
R∆ν2N − CHµx

R(uδa+ vδe)

+
1

2
CHµx,µz

Nrℓ
2(up+ vq)

)︃
+Na + Jz δ̇r (4.31f)

where ∆νZ = pδa+ qδe and

∆νL =

⎧⎪⎨⎪⎩
1
2
ℓ2p(Nrδt+ δr) quadrotor+

1
2
ℓ2(Nrpδt+ qδr) quadrotor×

1
2
ℓ2Nrpδt multirotor≥6

∆νM =

⎧⎪⎨⎪⎩
1
2
ℓ2q(Nrδt− δr) quadrotor+

1
2
ℓ2(Nrqδt+ pδr) quadrotor×

1
2
ℓ2Nrqδt multirotor≥6

∆νN =

⎧⎪⎨⎪⎩
pδa− qδe quadrotor+
pδe+ qδa quadrotor×
0 multirotor≥6

∆ν2N =

⎧⎪⎨⎪⎩
1
2
Nrℓ

2(p2 − q2) quadrotor+
Nrℓ

2pq quadrotor×
0 multirotor≥6

A detailed derivation of Model 1 is given in Appendix A.1. Note the configuration-dependent
terms, ∆ν(·), stem from the effect of angular velocity on the change in total rotor inflow.
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Remark 4.3. The terms in Model 1 that do not explicitly depend on rotor speed retain
implicit dependence through the induced inflow velocity model in Eq. (4.11). By choosing a
linear inflow model, we have replaced the physically meaningful structure of Eq. (4.10) with
an experimentally determined approximation (4.11). The constant parameters CHµ0,µx

, CH
µ2x

,
CHµx,µz

, and CQ
µ2
z

implicitly depend on the aggregate rotor speed data used to identify their
values. The only exception is CT

µ2x
term, which does not arise from the inflow model.

This proposed model has several benefits when applied to control and estimation applica-
tions. Mainly, this model structure is valid over a large range of velocities. For steady flight
in any direction, barring descending flight into a vortex ring state, there are few approxi-
mations made in progressing from the initial blade element theory to the final model. This
model is also valid for large roll rate and pitch rate perturbations from translating flight
because the local rotor velocity is incorporated directly. Furthermore, the use of virtual
actuators instead of rotor speeds not only generalizes the model to any configuration satis-
fying Assumption 4.4, but also reveals an intuitive understanding of non-trivial effects such
as CHµx

R(uδa + vδe) in the yawing moment equation, Mz. This term captures the yawing
moment due to differential drag under virtual aileron and elevator commands; it is similar
to adverse/proverse yaw for a fixed-wing aircraft.

However, Model 1 ignores effects that might be important in some applications. First, the
angular velocity of the aircraft is not considered in the blade-element forces and moments.
In applications where the vehicle is rapidly rotating (e.g., upset recovery from tumbling
motion), the incorporation angular velocity in the blade-element loads may be beneficial.
Second, unsteady effects such as blade flapping and inflow dynamics are neglected. While
the linear approximation (4.11) is not a bad approximation of the steady inflow condition,
unsteady inflow effects may be important to model when controlling and/or estimating
motion at fast time scales.

4.3.3 Incorporation of Motor Dynamics
When used for state and/or disturbance estimation, the virtual actuators can be treated as
inputs or may be estimated as states. In control applications, however, one must acknowledge
that the virtual actuators δ and δ2 are not independently controlled. To resolve this issue,
δ and δ2 may be included in a motor model, such as Eq. (4.17), whose input corresponds
to physically realizable motor commands. In vector form, where Q = [Q1 · · · QNr ]

T and
vm = [vm,1 · · · vm,Nr ]

T, Eq. (4.17) becomes

JzΩ̇ = −ktkv

Rm
Ω+

kt

Rm
vm +Q (4.32)

Referring to Eqs. (4.16b)–(4.17),

Qm = −ktkv

Rm
Ω+

kt

Rm
vm
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is the vector comprising the applied motor torques. Pre-multiplying both sides of Eq. (4.32)
by Mix and defining the actuator control input

uδ :=
1

kv
Mixvm (4.33)

we obtain
Jzδ̇ = −ktkv

Rm
δ +

ktkv

Rm
uδ + MixQ (4.34)

Unlike in the derivation of the yawing moment equation (4.31f), the second-order rotor torque
coefficients, such as CQ

µ2x
and CQµ0,µx

, do not completely vanish from the term MixQ in
Eq. (4.34). This introduces complexity into the model, with many terms that have negligible
influence. To simplify the model, we neglect these second-order torque coefficients (as defined
in Eq.(4.13d)) to yield

Jzδ̇ = −ktkv

Rm
δ +

ktkv

Rm
uδ

+ ρπR3
(︁
CQ0R

2δ2 + CQµ0
Rν0δ + CQµx

Rvxδ − CQµz
R (wδ −∆)

)︁
(4.35)

where ∆ = [∆νz/Nr ∆νL ∆νM ∆νN ]T.

Remark 4.4. It is important to note that these second-order coefficients do vanish in the
virtual rudder dynamics (the final component of Eq. (4.34)). As a result, the simplified
actuator dynamics(4.35) remain consistent with the yawing moment equation (4.31f).

With the rotor aerodynamic torques incorporated into the actuator dynamics, we can con-
struct the rigid-body yawing moment, Mz, by substituting the applied motor torque Qm
into Eq. (4.24) to obtain

Mz =
ktkv

Rm
(δr − uδr)+ρπR2

(︃
−CHµx

R(uδa+ vδe) +
1

2
CHµx,µz

Nrℓ
2(up+ vq)

)︃
+Na (4.36)

From this analysis, we see that the incorporation of a motor model changes where rotor
aerodynamic torques Qi enter the flight dynamic model. Instead of directly affecting the
rigid-body moment Mz, they enter in the actuator dynamics.

4.3.4 Nonlinear Model Simplifications
For some applications, Model 1 may still be too complicated to experimentally identify and
apply in control and estimator design. Here, we consider two optional assumptions, each
of which progressively simplifies the model structure with the aim of simplifying the model
identification process. One possible simplification of Model 1 is to neglect the change in
induced inflow velocity due to changes in vehicle velocity.
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Assumption 4.8 (Optional). The induced inflow velocity is constant and equal to the hover
inflow velocity ν0 given by Eq. (4.9).

Under Assumption 4.8, Model 1 simplifies as follows.

Model 2. The force and moment components for a multirotor aircraft additionally satisfying
Assumption 4.8 are

Fx = ρπR2Nru
(︁
−CHµx

Rδt− CHµ0,µx
ν0 − CHµx,µz

w
)︁
+Xa (4.37a)

Fy = ρπR2Nrv
(︂
− CHµx

Rδt− CHµ0,µx
ν0 − CHµx,µz

w
)︂
+ Ya (4.37b)

Fz = ρπR2
(︂
− CT0R2Nrδ

2t+ CTµ0RNrν0δt

+ CTµz
R(Nrwδt−∆νZ)− CT

µ2x
Nrv

2
x

)︂
+ Za (4.37c)

Mx = ρπR2

(︃
− CRµx

R2uδr + CT0R
2δ2a− CTµ0Rν0δa− CTµzR

(︂
wδa−∆νL

)︂
− CHµx

RNrhvδt− CHµ0,µx
Nrhvν0 − CHµx,µz

Nrhvw

)︃
+ La + Jzqδr (4.37d)

My = ρπR2

(︃
− CRµx

R2vδr + CT0R
2δ2e− CTµ0Rν0δe− CTµzR

(︂
wδe−∆νM

)︂
+ CHµx

RNrhuδt+ CHµ0,µx
Nrhuν0 + CHµx,µz

Nrhuw

)︃
+Ma − Jzpδr (4.37e)

Mz = ρπR2

(︃
CQ0R

3δ2r + CQµ0
R2ν0δr + CQµz

R2
(︂
wδr −∆νN

)︂
− CQ

µ2z
R∆ν2N

− CHµx
R(uδa+ vδe) +

1

2
CHµx,µz

Nrℓ
2(up+ vq)

)︃
+Na + Jz δ̇r (4.37f)

By assuming the inflow velocity to be the same as in hover, we have lessened the model’s
utility at high speeds. However, the model structure that remains now smoothly depends on
the vehicle velocity, allowing for more flexibility in control law and estimator design. More
specifically, Assumption 4.8 eliminates terms in Model 1 that depend linearly on rotor-plane
airspeed, vx, whose derivative does not exist at v = 0. The quadratic term CT

µ2x
Nrv

2
x remains

in the Fz equation, however, as it does not arise from the assumed inflow model. Practically,
this term can be interpreted as an “airspeed-dependent bias” to the thrust model.

Depending on the airframe design, it may be unnecessary to separately model rotor and
airframe effects. For many vehicles, the airframe-specific force and moment are small com-
pared to the rotor-based force and moment. Thus, it is often sufficient to lump these terms
together to further simplify the Model 2.

Assumption 4.9 (Optional). Airframe aerodynamics can be lumped into the rotor aerody-
namics.
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Model 3. The force and moment components for a multirotor aircraft additionally satisfying
Assumption 4.9 are obtained by setting Xa, Ya, Za, La, Ma, Na to zero in Model 2.

Model 3 may also be obtained by way of a second-order Taylor series approximation of
Model 2 about hover. For some nonlinear control and estimation applications, especially
where a Lyapunov stability approach is used [86, Ch. 3], this quadratic structure makes the
control and stability problem more tractable.

4.3.5 Linear Flight Dynamic Models
For some applications, a linear, time-invariant flight dynamic model is sufficient for operation
about some steady motion. Such a model may be obtained by linearizing the equations of
motion about this nominal flight condition. Taking this approach for Model 1 reveals a
physically principled structure of the linear system that can be identified from flight data.

Consider the nonlinear dynamics of the aircraft given by Eq. (2.15), where η is the air-
craft configuration and ν is its generalized velocity. For Model 1, the generalized force F
comprising the applied force and moment has the general dependence

F (ν,Ω, Ω̇) =

[︃
F (ν,Ω)

M (ν,Ω, Ω̇)

]︃
(4.38)

In Model 1, F and M are implicitly functions of Ω through the definition of the virtual
actuators. Specifically, Ω = M†

ixδ, where (·)† is the Moore-Penrose pseudoinverse.2

Consider small perturbations about some equilibrium flight condition defined by ν = ν0
and Ω = Ω0. The generalized velocity and rotor speed perturbations from this condition are
denoted ∆ν = ν−ν0 and ∆Ω = Ω−Ω0, respectively. Note the equilibrium condition implies
Ω̇0 = 0. If we assume δr changes sufficiently slowly, we can neglect the δ̇r term in Mz and
obtain a linear system through a first-order Taylor series approximation of Eq. (2.15). Letting
the evaluation of partial derivatives at the equilibrium condition be denoted ∂(·)/∂(·)|eq and
defining the state vector x = [ηT νT]T, we have⎡⎢⎣∆η̇

∆ν̇

⎤⎥⎦
⏞ ⏟⏟ ⏞

∆ẋ

=

(︄ ⎡⎢⎣∂fη

∂η

∂fη

∂ν

∂fν

∂η
∂fν

∂ν

⎤⎥⎦
⃓⃓⃓⃓
⃓⃓⃓
eq⏞ ⏟⏟ ⏞

A0

+

⎡⎢⎣0 0

0 M−1 ∂F
∂ν

⃓⃓
eq

⎤⎥⎦
⏞ ⏟⏟ ⏞

Aa

)︄⎡⎢⎣∆η
∆ν

⎤⎥⎦
⏞ ⏟⏟ ⏞

∆x

+

⎡⎢⎣ 0

M−1 ∂F
∂Ω

⃓⃓
eq

⎤⎥⎦
⏞ ⏟⏟ ⏞

BΩ

∆Ω (4.39)

More compactly,
∆ẋ =

(︁
A0 +Aa

)︁⏞ ⏟⏟ ⏞
A

∆x+BΩ∆Ω (4.40)

Now, the virtual actuator definition may be used again to obtain

∆ẋ = A∆x+B∆δ (4.41)
2An analytical expression for M†

ix is given in Eq. (A.5).



4.3. Multirotor Forces and Moments 57

where B = BΩM†
ix.

The linear, time-invariant system (4.41) may be used for model-based estimation and control
applications where the aircraft motion remains close to the equilibrium state and the motor
dynamics evolve on a significantly faster time scale than the rigid body dynamics while
virtual rudder command changes remain slow. In scenarios where this assumption cannot be
made, a linearization of Eqs. (4.35) and (4.36) can be used to include motor dynamics in the
linear model to avoid the necessity of assuming δ̇r = 0. Redefining the applied force/moment
vector, F , as specified in Eq. (4.38) by incorporating Mz from the motor model (4.36), we
subsequently adjust A and B in Eq. (4.41). As a result, the linearized dynamics of the
augmented state vector, ξ =

[︁
xT δT]︁T, are

⎡⎢⎢⎣∆ẋ
∆δ̇

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

∆ξ̇

=

⎡⎢⎢⎣ A B

− 1
Jz

Mix
∂Q
∂x

⃓⃓
eq −

ktkv
JzRm

I− 1
Jz

Mix
∂Q
∂Ω

⃓⃓
eq M†

ix

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

Aξ

⎡⎢⎢⎣∆x
∆δ

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

∆ξ

+

⎡⎢⎢⎣
09×4

−ktkv
Rm
I−1e3

ktkv
JzRm

I

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

Bξ

∆uδ

(4.42)
where e3 = [0 0 1]T and 09×4 is an 9× 4 matrix of zeros.

Given an equilibrium condition, the two linear systems (4.41) and (4.42) each reveal a par-
ticular structure that is informed by the underlying theory. A major benefit of the preceding
analysis is to provide an analytical framework for understanding the implications of model
simplifications in control and estimator design.

Most commonly considered is the hover condition defined by ν0 = 0 and Ω0 = Ω01, where 1
is a vector of ones. The Jacobian of the force and moment vectors defined in Model 1 with
respect to translational velocity is singular at the origin, however, because the derivative of
the rotor plane airspeed vx =

√
u2 + v2 is undefined at zero. One remediation is to make

the hyperbolic approximation vx ≈
√
u2 + v2 + ε for some sufficiently small value of the

non-negative parameter ε. Computing the terms in Eqs. (4.39) and (4.42) respectively for
the hover condition and taking the limit as ε→ 0, we obtain the following two linear flight
dynamics models about hover.

Model 4. Treating virtual actuators as inputs, a linear flight dynamic model about hover is
given by Eqs. (4.39)–(4.41). The Jacobian matrices of the aerodynamic force/moment vector
are

∂F

∂ν

⃓⃓⃓⃓
eq

= −ρπR3NrΩ0

⎡⎢⎢⎢⎢⎢⎢⎣
αH 0 0 0 0 0
0 αH 0 0 0 0
0 0 CTµz 0 0 0
0 hαH 0 CTµz ℓ

2/2 0 0
−hαH 0 0 0 CTµz ℓ

2/2 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (4.43a)
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and

∂F

∂Ω

⃓⃓⃓⃓
eq

M†
ix = ρπR3

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
βt 0 0 0
0 βa,e 0 0
0 0 βa,e 0
0 0 0 βr

⎤⎥⎥⎥⎥⎥⎥⎦ (4.43b)

where

αH = CHµ0,µx
µ0 + CHµx

βt = −2CT0RNrΩ0 + CTµ0Nrν0

βa,e = CT0RNrΩ0/2− CTµ0
ν0

βr = −CQ0R
2NrΩ0/2− CQµ0

Rν0

Model 5. Treating actuator commands as inputs, a linear flight dynamic model about hover
is given by Eq. (4.42), where ∂F

∂ν

⃓⃓
eq and ∂F

∂Ω

⃓⃓
eq M†

ix are given in Eq. (4.43) with

βr =
ktkv

RmρπR3

and

Mix
∂Q
∂ν

⃓⃓⃓⃓
eq

= ρπR4Ω0CQµz

⎡⎢⎢⎣
0 0 −1 0 0 0
0 0 0 1

2
Nrℓ

2 0 0
0 0 0 0 1

2
Nrℓ

2 0
0 0 0 0 0 0

⎤⎥⎥⎦ (4.44a)

Mix
∂Q
∂Ω

⃓⃓⃓⃓
eq

M†
ix = ρπR4(2CQ0Ω0R + CQµ0

ν0)I (4.44b)

The two linear models 4 and 5 are similar in structure to previous approaches, such as the
one by Cunningham and Hubbard [37], but explicitly connect the linear model parameters
to the underlying blade element and momentum theory.

4.4 Multirotor Simulation Experiment
A simulation study was conducted using a high-fidelity multirotor simulation [68] as the
“true” dynamics to investigate the utility of the proposed multirotor model. The simulated
vehicle is a small, commercial off-the-shelf quadrotor with 14-inch fixed-pitch propellers.
The rigid body forces and moments computed in the simulation were obtained from isolated
rotor and airframe wind tunnel data [44]. Thus, one may directly query the simulation’s
aerodynamics database at given vehicle state and control values in a similar manner to wind
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tunnel testing and computational aerodynamic prediction techniques. For this analysis, only
Model 3 was considered, which was done for two reasons. First, the regressors of Model 1 were
highly co-linear for the queried data, which made accurate parameter estimation problematic.
Second, since the empirically-derived form of airframe aerodynamics can vary greatly among
aircraft and flight regimes, we chose to identify and analyze only rotor-derived terms using
data for which the airframe force and moment are set to zero.

The test matrix was designed using design of experiments (DOE) and response surface
methodology (RSM) techniques [106], [117] to facilitate accurate identification of the terms
included in the postulated multirotor model structure. The test factors directly specified
in the experiment included body-frame translational velocity (u, v, w), angular velocity (p,
q, r), and rotor speeds (Ω1, Ω2, Ω3, Ω4). Table 4.1 lists the model terms associated with
the model structure where all constant parameters are combined into coefficients for each of
these regressors to estimate model parameters using least-squares regression.

Table 4.1: Rotor aerodynamics regressors corresponding to Model 3 (configuration-specific
terms are shown in parentheses)

Response Postulated Regressors
Xr u, uw, uΩk

Yr v, vw, vΩk

Zr Ωk, wΩk, pΩk, qΩk, u2, v2, Ω2
k

Lr v, vw, Ωk, uΩk, vΩk, wΩk, pΩk, Ω2
k, (qΩk)

Mr u, uw, Ωk, uΩk, vΩk, wΩk, qΩk, Ω2
k, (pΩk)

Nr Ωk, uΩk, vΩk, wΩk, up, vq, Ω2
k, (pΩk, qΩk, pq)

A response surface experiment design was created using Design-Expert [139] to support es-
timation of all possible nonlinear and cross model terms up to third-order, which includes
each of the terms present in Table 4.1. A cuboidal I-optimal response surface experiment
design [6], [57], [106], [117] was used to specify sets of test points defined by values of v, ω,
and Ω at which the multirotor simulation is queried. I-optimal response surface designs min-
imize the integrated prediction variance across the design space for a given model structure.
The data used for modeling were collected in three test blocks, each with 300 test points
to sequentially improve the design by augmenting the previous blocks, meaning that the
design points from previous blocks are considered when creating subsequent blocks. A final
fourth test block served as validation data withheld from the model identification process
and the points were selected from a uniform distribution using a random number generator.
A two-dimensional slice of the experiment design is shown in Figure 4.5, where each block
is plotted sequentially (denoted by “≤”) to show how the design points progressively fill the
design space.

The ranges of factor settings used to conduct the experiment are listed in Table 4.2. The u
and v body velocity components as well as the angular velocity bounds were chosen to be
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Figure 4.5: Two-dimensional slice of the multirotor simulation experiment design

Table 4.2: Test factor ranges for the multirotor simulation experiment

Factor(s) Units Minimum Maximum
u, v ft/s -60 +60
w ft/s -60 +8.7

p, q, r deg/s -360 +360
Ω1,Ω2,Ω3,Ω4 rad/s 193 711

operationally representative for the vehicle size. The lower bound on vertical component w
was chosen similarly, while the upper bound on w was chosen to be half the hover inflow
velocity to avoid regions of flight susceptible to vortex ring state [154]. The bounds on the
rotor speeds were chosen from the advance ratio limits of the wind tunnel data for the chosen
body velocity limits.

4.5 Modeling Results

Using the queried simulation data from Blocks 1, 2, and 3 of the response surface experiment
design, least squares parameter estimates were found for Model 3. A two step approach
was used in which least squares regression was first performed independently for each force
and moment component to characterize the “best case residuals” as well as the relative
importance of terms in the model. Next, a multivariate multiple regression (MMR) approach
was used to obtain weighted least-squares parameter estimates for the complete model. The
identified model was validated against force and moment data from Block 4 of the response
surface experiment design. Furthermore, the relative contributions of each term (regressor
times parameter) in the final identified model were evaluated for increasing speeds of steady,
forward flight.
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4.5.1 Regressor Ordering and Initial Regression

First, the equation-error, ordinary least-squares approach was used to estimate the model
parameters for each force and moment equation independently [113, Ch. 5], [80, Ch. 6]. The
vector of N outputs for the ith force/moment equation is

yi =Xiθi, i = 1, . . . , 6 (4.45)

where θi ∈ Rpi is the vector of unknown parameters that appear in the ith equation and
Xi ∈ RN×pi is the matrix of model regressors. Let zi be the vector of “measured” outputs
from the simulation data for the ith force/moment component. While the outputs at the
test points are obtained without error, the underlying wind tunnel data contains random
errors which are transferred into zi in a nonlinear manner. We also recognize there is
deterministic residual error between yi and zi due to unmodeled aerodynamics. For these
reasons, the least-squares solution is not necessarily a minimum mean squared error or
maximum likelihood estimate in a statistical sense.

Because the justification for statistical interpretation of the regression results is weak (i.e.,
the assumptions of a partial F -test do not hold), the coefficient of determination,

R2 =
ŷTz −Nz̄2

zTz −Nz̄2
= 1− SSR

SST
(4.46)

was used as the metric in a stepwise regression-like procedure to incrementally add all terms
to the model in order of their contribution. Here, SSR is the sum of squared residuals and
SST is the total sum of squares. A stopping criterion is not considered as typically done in
stepwise regression. The aim here is to order terms by their relative importance rather than
determine a model structure. That is, all hypothesized terms are eventually included in the
model.

Specifically, consider a linearly parameterized model with p regressors and let C =
{x1, . . . ,xp}, where xj represents the jth column of the regressor matrix, X. The forward
selection ordering algorithm (FSOA), formally stated in Algorithm 1, begins by considering a
model with only one regressor, where we denote I (initially the empty set, ∅) as the ordered
set of regressors already added to the model. Linear regression is performed for the set of
regressors I ∪{xi} for each xi ∈ C. The coefficients of determination are computed for each
of these identified models and denoted R2(I ∪ {xi}). The candidate regressor that yields
the highest R2 value, is then added to the end of I and removed from C. This process is
repeated until all p terms are included in the ordered set I.
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Algorithm 1: FSOA
Input: C = {x1, . . . ,xp}
Output: I
I ← ∅
while C ̸= ∅ do

ξ ← arg max
x∈C

R2 (I ∪ {x})

I ← I ∪ {ξ}
C ← C \ {ξ}

end

The FSOA results are given in Tables 4.3–4.6, where the boldface values indicate the term
that yields the largest R2 value. Note the R2 values in Tables 4.3–4.6 may be negative,
indicating the addition of that term produces a fit worse than a constant model. For each

Table 4.3: Model 3 Xr and Yr regressors ordered by relative importance

R2 [%]
Iter. CHµx

CHµ0,µx
CHµx,µz

1 97.4 96.6 48.0
2 – 98.7 98.3
3 – – 99.2

Table 4.4: Model 3 Zr regressors ordered by relative importance

R2 [%]
Iter. CT0 CTµ0 CT

µ2x
CTµz

1 39.4 31.3 −14.4 −177.3
2 – 39.7 40.1 96.5
3 – 96.7 98.4 –
4 – 98.6 – –

of the models containing all regressors (the last rows of Tables 4.3–4.6), the coefficients of
determination (R2), normalized root mean squared errors (NRMSE),

NRMSE =
1

range(z)

√︃
1

N
(z − ŷ)T(z − ŷ) (4.47)

and estimated model residual variances,

σ̂2 =
1

N − p

N∑︂
k=1

(z(k)− ŷ(k))2 (4.48)
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Table 4.5: Model 3 Lr and Mr regressors ordered by relative importance

R2 [%]
Iter. CRµx

CT0 CTµ0 CTµz
CHµx

CHµ0,µx
CHµx,µz

1 0.5 83.6 81.7 13.4 6.5 5.7 0.8
2 84.1 – 83.6 90.4 89.8 89.2 84.5
3 90.9 – 90.5 – 96.4 95.8 91.3
4 96.8 – 96.4 – – 96.4 96.9
5 97.3 – 96.9 – – 96.9 –
6 – – 97.4 – – 97.3 –
7 – – – – – 97.4 –

Table 4.6: Model 3 Nr regressors ordered by relative importance

R2 [%]
Iter. CQ0 CQµ0

CQµz
CQ

µ2z
CHµx

CHµx,µz

1 47.2 45.8 19.8 0.0 27.8 0.2
2 – 47.2 47.2 47.2 74.4 47.5
3 – 74.5 74.4 74.5 – 74.6
4 – 74.7 74.7 74.7 – –
5 – – 74.7 74.7 – –
6 – – 74.7 – – –

Table 4.7: Model 3 Initial regression results

Component R2 [%] σ̂2 NRMSE [%]
Xr 99.2 1.28× 10−2 2.50
Yr 99.2 1.30× 10−2 2.43
Zr 98.6 5.31× 10−1 2.29
Lr 97.4 1.97× 10−1 2.34
Mr 97.4 1.90× 10−1 2.15
Nr 74.7 2.79× 10−2 9.62

were computed. These three metrics are given in Table 4.7 for Model 3.

Using these results, we can relate each parameter in Model 3 to its definition in Eq. (4.13) to
obtain insight into the predominant physical effects captured by the model. In the Xr and
Yr force components, the most influential model terms are CHµx

{u, v}δt, which come from
the rotor blade drag coefficient. For example,

CHµx
uδt =

1

2a
Cσ c̄du

1

Nr

Nr∑︂
i=1

Ωi (4.49)
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where CHµx
= 1

2a
Cσ c̄d from Eq. (4.13) and δt = 1

Nr

∑︁Nr
i=1Ωi from Eq. (4.30). The remaining

terms stem from the inflow velocity effects. In the Zr force equation, the dominant term is
CT0δ

2t, which comes from the sum of blade-element lift due to rotor speed. This is often
the only effect included in control applications. However, we see the subsequent addition of
term containing CTµz greatly increases the R2 value, indicating its overall importance. In
the rolling and pitching moment equations, the most important terms are CT0δ2{a, e}, which
come from the difference in lift due to the difference in rotor speeds (similar to CT0δ2t in Zr).
Finally, the most significant term in the yawing moment is CQ0δ

2r, which models the rotor
profile drag due to the difference in rotor speeds [83, Sec. 5-3]. The second most influential
term is CHµx

(uδa + vδe), which models the yawing moment due to differential rotor blade
drag under virtual aileron and elevator commands (previously mentioned in Section 4.3.2).
In the yawing moment, the addition of the final three terms does not appreciably increase the
R2 value. While blade element theory indicates the presence of these terms, their importance
is low for the given simulation data. Overall, these results and this approach, in general,
help to inform the model selection process for a given application. It is important to note
that the magnitude of the yawing moment data was an order of magnitude smaller than the
other moments, thus leading to a lower signal-to-noise ratio.

4.5.2 Multivariate Multiple Regression and Validation
Recognizing that parameters are shared among axes, the estimates in Section 4.5.1 are not
obtained using all possible data. For example, the parameter CHµx

appears in all but the Fz
equation, but is estimated five separate times. One approach for reconciling the five distinct
estimates of this single parameter is to compute a weighted average of these estimates by
the inverse of their variance [158, Ch. 4]:

θ̂i =

∑︁pi
j=1 βij θ̂ij∑︁pi
j=1 βij

(4.50)

where βij = 1/σ2
ij. The variance of the weighted parameter estimate is then σ2

i = 1/
∑︁pi

j=1 βij.
However, Eq. (4.50) assumes correct parameter variances, which is hard to justify in this
deterministic interpretation of the least squares solution. Another approach is to include
data from all force and moment components to simultaneously estimate these parameters,
which has three main benefits. First, the independent models for each axis may be overfit
– especially the rotor aerodynamic moments. This alternative approach greatly reduces the
total number of parameters to be identified. Second, all data are used to estimate the set of
parameters. For example, CHµx

can be estimated using five times as many measurements.
Third, as will be detailed shortly, the residuals of the initial deterministic regression in
Section 4.5.1 can justify a statistical interpretation of the final parameter estimates.

Considering all force and moment components, the output of the kth test point, y(k) =
[y1(k) · · · y6(k)]T ∈ R6, is

y(k) =H(v(k),ω(k),Ω(k))θ (4.51)
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where θ ∈ Rnθ is the vector of proposed parameters and H : R3 ×R3 ×RNr → R6×nθ is the
regressor function for the model. The “measured” output of this model is

z(k) = y(k) +w(k) (4.52)

where each w(k) is assumed to be independently sampled from a Gaussian distribution. Let
w̃(k) = ŷ(k)−z(k) where ŷ(k) = [ŷ1(k) · · · ŷ6(k)]T was computed through the initial regres-
sion in Section 4.5.1. The mean and covariance of w(k) are then respectively approximated
by

w̄ = E {w(k)} ≈ 1

N

N∑︂
j=1

w̃(j) ≈ 0 (4.53a)

R = E
{︁
[w(k)− w̄][w(k)− w̄]T

}︁
≈ 1

N − 1

N∑︂
j=1

w̃(j)w̃T(j) (4.53b)

The diagonal elements of R are given in Table 4.7 as σ̂2. The validity of the Gaussian
assumption is qualitatively evaluated in Figures 4.6 and 4.7 by fitting a Gaussian probabil-
ity density function to the histogram of residual data and plotting the inverse cumulative
distribution function (ICDF), Φ−1(P (k)), against the ordered model residuals. The model
residuals appear to follow the shape of a normal distribution (shown as the red line in Fig-
ure 4.6), and the ordered residuals are mostly linear with respect to the ICDF. The least
“Gaussian” residuals appear in the Zr data, where very positive residuals occur with higher
probability than a Gaussian distribution would predict. However, Figure 4.7 shows a straight
line is formed by residuals closer to zero, which are more influential in the validity of statis-
tical conclusions [113, Ch. 5]. Altogether, these results indicate normality of the residuals is
a reasonable assumption.

With the measurement model determined and random measurement errors characterized,
statistical estimates of the model parameters were obtained using multivariate multiple re-
gression (MMR) [80, Ch. 6]. Let

Z =

⎡⎢⎢⎢⎣
z(1)
z(2)

...
z(N)

⎤⎥⎥⎥⎦ H =

⎡⎢⎢⎢⎣
H(v(1),ω(1),Ω(1))
H(v(2),ω(2),Ω(2))

...
H(v(N),ω(N),Ω(N))

⎤⎥⎥⎥⎦ W =

⎡⎢⎢⎢⎣
w(1)
w(2)

...
w(N)

⎤⎥⎥⎥⎦ (4.54)

The stacked vector of model outputs is given by Z = Hθ +W , and the covariance matrix
for W is R = R ⊗ IN , where ⊗ is the Kronecker product and IN is the N × N identity
matrix. Then, the parameter estimates are given by the weighted least squares solution

θ̂ = (HTR−1H)−1HTR−1Z (4.55)

and the output of the kth test point is ŷ(k) = H(v(k),ω(k),Ω(k))θ̂. Because each w(k)
was assumed to be independently sampled from a Gaussian distribution, these parameter
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Figure 4.7: Normality of residuals for Model 3

estimates are both minimum mean square error (MMSE) and maximum likelihood (ML)
estimates [16, Ch. 2].

The statistical significance of each of the identified parameters is evaluated using the t-
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statistic,

t0j =
θ̂j

σ(θ̂j)
(4.56)

where σ(θ̂j) is the estimated standard deviation of the θ̂j. The null hypothesis, H0 : θ̂j = 0,
is rejected with a significance level of α if |t0j | > t(α/2, N−nθ), and the alternate hypothesis,
H1 : θ̂j ̸= 0, is accepted. Here, t(α/2, N − nθ) is the sample of a one-tail t-distribution with
confidence α/2 and N − nθ degrees of freedom. Alternatively, the P-value can be used to
give the probability of the null hypothesis, H0. In other words, it is the smallest significance
level that results in the rejection of H0 [106, pg. 40]. It is given by

P {H0} = 2
(︁
1− Ft

(︁
|t0j |, N − nθ

)︁)︁
(4.57)

where Ft
(︁
|t0j |, N − nθ

)︁
is the cumulative distribution function of the N − nθ degree-of-

freedom one-tail t-distribution evaluated at |t0j |. If P {H0} < α, then H0 is rejected and θj
is statistically different from zero.

The MMR results are tabulated in Table 4.8, where R2
MMR and NRMSEMMR are the coeffi-

cient of determination and normalized root mean square error for the weighted least squares
solution, respectively. Another useful measure of model fit included in Table 4.8 is Theil’s
inequality coefficient (TIC),

TICi =

√︂
1
N
(ŷi − zi)T(ŷi − zi)√︂
1
N
ŷT
i ŷi +

√︂
1
N
zT
i zi

(4.58)

which is normalized between zero and one with zero indicating perfect fit [80, Ch. 11].
The parameter estimates computed using Eq. (4.55) are given in Table 4.9 along with their
standard deviation, t-statistic, and P-value (given to double precision). It can be seen
that most parameter standard deviations are at least an order of magnitude less than their
estimates. The notable exceptions are CQµ0

, CQµz
, and CQ

µ2z
. This is also seen in their

t-statistics and P-values. While blade element theory indicates the presence of these terms,
their statistical significance is low for the given simulation data. This result indicates these
terms are not statistically significant using the available data. However, additional data
or sampling approaches may reveal their significance to the yawing moment. Note that the
variance-weighted estimates using Eq. (4.50) resulted in generally similar results to the MMR
approach except for CTµ0 which had a 45% smaller mean but the same standard deviation.
It is hypothesized that overfit in the initial regression of the rolling and pitching moments
caused this discrepancy.

Finally, the identified models were validated against the force and moment data from Block 4
of the response surface experiment design. The validation metrics are given in Table 4.10.
It can be seen that the axes that validate most poorly as compared to the model fit are
the rolling and pitching moments. Due to the moment arm effects of rotor drag forces,
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Table 4.8: Model 3 MMR results

Component NRMSE [%] TIC
Xr 2.55 0.046
Yr 2.48 0.046
Zr 2.31 0.035
Lr 3.77 0.133
Mr 3.55 0.135
Nr 9.64 0.272

R2
MMR = 98.4%, NRMSEMMR = 1.85%

Table 4.9: Model 3 MMR parameter estimates

Parameter Estimate Std. Dev. |t0| P-value
CHµx

6.38× 10−3 1.08× 10−4 59.10 0.00
CHµ0,µx

6.65× 10−2 1.68× 10−3 39.59 3.59× 10−301

CHµx,µz
−1.05× 10−2 3.16× 10−4 33.14 2.22× 10−219

CT0 1.48× 10−2 1.44× 10−4 102.65 0.00
CTµ0 3.29× 10−2 3.53× 10−3 9.33 1.57× 10−20

CT
µ2x

4.57× 10−2 1.50× 10−3 30.51 1.09× 10−188

CTµz
−7.05× 10−2 3.85× 10−4 182.94 0.00

CRµx
1.14× 10−2 8.22× 10−4 13.88 4.57× 10−43

CQ0 1.31× 10−3 2.59× 10−4 5.08 3.91× 10−7

CQµ0
−5.12× 10−3 7.70× 10−3 0.67 5.06× 10−1

CQµz
−3.49× 10−4 7.74× 10−4 0.45 6.51× 10−1

CQ
µ2z

6.22× 10−2 1.06× 10−1 0.59 5.57× 10−1

these model structures contain the highest number of terms and thus are susceptible to
overfit. This observation along with the FSOA results of Section 4.5.1 indicate that system
identification efforts may benefit from the removal of terms such as CHµ0,µx

and CTµ0 from
the rolling and pitching moments, which did not increase the coefficient of determination by
any appreciable amount.

4.5.3 Steady Flight Analysis
The regressor importance analysis in Section 4.5.1 is based on the the ensemble of data
across a broad range of conditions. For motion in the neighborhood of some nominal flight
condition, however, the relative importance of regressors may differ. For this reason, we also
consider the relative contributions of model terms (regressors times parameters) throughout
increasing speeds of forward flight.

Using the high-fidelity simulation environment described by Foster and Hartman [44], the
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Table 4.10: Model 3 validation metrics

Component σ̂2 NRMSE [%] TIC
Xr 1.04× 10−2 2.26 0.046
Yr 9.50× 10−3 2.00 0.045
Zr 3.97× 10−1 2.84 0.042
Lr 2.86× 10−1 5.14 0.158
Mr 2.76× 10−1 4.68 0.148
Nr 1.75× 10−2 9.52 0.291

family of equilibrium constant altitude, forward flight conditions was numerically determined
for airspeeds ranging from zero to 60 ft/s. Next, the normalized contributions of model terms
across these forward flight conditions were evaluated. For the ith force/moment component,
let the jth term be denoted yij = hijθj, where hij is the i, j-element of the regressor matrix
H in Eq. (4.51). Since these steady motions are characterized by zero applied moment and
side-force, we qualitatively evaluate the normalized contributions of modeled terms X̂r,j and
Ẑr,j in the Xr and Zr forces as shown in Figures 4.8a and 4.8b, respectively.
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Figure 4.8: Model term contributions in forward flight

For the Xr force component, the most important term across all forward flight conditions is
CHµx

uδt, which is in agreement with the FSOA results. Additionally, we see that as airspeed
increases, the importance of the term CHµx,µz

uw increases. This result should be kept in
mind for control and estimation applications involving flight at high speeds. The Zr force
component tells a more interesting story. Again, the most important term, CT0δ2t, agrees
with the FSOA results. However, the magnitude of CTµz

(Nrwδt − ∆νZ) (one of the least
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important terms at low speeds) rapidly increases with airspeed. The intersection of curves
in Figure 4.8b represents forward speeds at which the relative importance of terms changes.



Chapter 5

Robust Control for System
Identification of Unstable Aircraft

5.1 Introduction
Large domain flight dynamic models, such as those derived in Chapter 4, are often required
for estimation and control design. In contrast with numerical or wind tunnel data, flight data
is preferred because it captures the true, full-scale dynamics of the aircraft under real-world
operating conditions. However, accurately estimating model parameters from flight data is a
non-trivial task. For fixed-wing aircraft, the use of orthogonal phase-optimized multisine ex-
citation signals (multisines for short) and multivariate orthogonal function (MOF) modeling
have been successfully used to obtain global flight data and model structures, respectively
[60], [107]. Note that in this context, the term global refers to the feasible flight envelope
as opposed to the full mathematical state space. The use of multisines and MOF modeling
works very well for statically stable aircraft that can be excited in an open-loop manner,
that is, without feedback stabilization. For unstable aircraft such as multirotor air vehicles,
on the other hand, a nominal trajectory must be stabilized before actuator excitation can be
applied. Therefore, an iterative approach is generally used, with each iteration involving data
collection, model identification, control law design, and robustness analysis [149]. Part of the
difficulty in this process stems from the fact that a stabilizing control law tends to introduce
correlation, suppress dynamics of interest, and amplify artificial dynamics [80, Ch. 9]. More
importantly, it is possible that input excitation signals used for model identification may
drive the system outside the region of attraction of the locally stable reference motion. This
chapter details a methodology for obtaining uncorrelated large-domain excitation data while
guaranteeing stability.

Identification of unstable aircraft can be done using either open-loop or closed-loop flight
data. The former approach is only feasible, however, over time horizons that are short rela-
tive to the growth of the fastest unstable mode. This means global excitation data cannot be
obtained in a continuous experiment. Having continuous, large-domain experimental data
simplifies data collection and supports time-domain model identification methods such as
output-error, filter-error, and Kalman filtering methods [80], [113]. To alleviate the prac-
tical issues associated with open-loop excitation, experimental data for unstable aircraft is
typically obtained under stabilizing closed-loop control. Since we are interested in flight
dynamic models for control and estimation purposes, we desire an open-loop model from

71
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closed-loop flight data. This is often done for linear model identification of multirotor air-
craft [37]. However, in applications where the model must be applicable over a large domain,
a nonlinear model must be identified [36]. In this chapter, we aim to concurrently design
a controller and an excitation signal that allow for larger amplitude excitation suitable for
identifying large-domain nonlinear models. Larger excitations provide better signal-to-noise
ratio (SNR), which is important in identifying flight dynamic models for small UAS [137].
These observations further motivate the need to develop safe methods of performing large-
amplitude identification maneuvers for unstable UAS.

While we focus on the multirotor, the methods presented here apply to unstable fixed-wing
configurations as well as vertical takeoff and landing (VTOL) aircraft, including hybrid
aircraft that transition between rotor-borne and wing-borne flight regimes. The approach we
present involves two data collection phases of the system identification process as opposed
to the traditional approach of incremental flight envelope expansions. First, linear time
invariant (LTI) models are identified about a set of specific flight conditions, which are
determined using a hypothesized model structure for the aerodynamic force and moment.
The identified models define an uncertain linear parameter-varying (LPV) system. Next,
input excitation signals and a reference trajectory are concurrently designed along with a
robust LPV control law that places a sub-optimal H∞ norm bound on the map from input
excitation to perturbation from this reference. Finally, this control law is used in the second
phase of data collection in which the UAS is capable of fully-automated flights that span the
desired flight domain in an efficient and safe manner for obtaining informative, uncorrelated
data for nonlinear model identification.

The rest of this chapter, which is based on reference [76], is organized as follows. Section 5.2
introduces the small quadrotor aircraft used to demonstrate the proposed methodology and
presents the assumptions required to formulate the rigid-body aircraft dynamics (2.15) as
a polytopic LPV system. The initial model identification process is detailed in Section 5.3,
which involves the first phase of data collection in the proposed methodology. Section 5.4
covers the development of excitation and reference signals along with the formulation of the
H∞ performance measure. The robust control design and closed-loop analysis is presented
in Section 5.5. Finally, Section 5.6 presents simulation results for the automated system
identification flight experiment — the second and final phase of flight data collection.

5.2 LPV Flight Dynamic Modeling

5.2.1 General System of Consideration
The proposed modeling methodology begins with the postulation of a nonlinear flight dy-
namic model for the aircraft of interest. Here, we consider the rigid-body aircraft dynam-
ics (2.15) with an Euler angle parameterization for the attitude rotation matrix. Specifically,

RIB = eS(e3ψ)eS(e2θ)eS(e1φ) (5.1)
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where φ, θ, and ψ are the roll, pitch, and yaw angles of the aircraft, respectively, and
e1 = [1 0 0]T, etc. With Θ = [φ θ ψ]T, the rotational kinematics (2.9) become

Θ̇ =

⎡⎣1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

⎤⎦
⏞ ⏟⏟ ⏞

LIB

⎡⎣pq
r

⎤⎦
⏞⏟⏟⏞
ω

(5.2)

Considering a quasi-steady aerodynamic model, the generalized force F is a function of the
generalized velocity ν, the m aircraft control inputs composing δ, and a parameter vector ϑ
which we ultimately aim to estimate. Considering a smooth model, we can (in a non-unique
manner) always write

F (ν, δ;ϑ) = A (ρ(ν), δ;ϑ)ν + B(δ;ϑ) (5.3)

where A (ρ(ν), δ;ϑ) ∈ R6×6 and B(δ;ϑ) ∈ R6. The matrix A contains functions ρ of
the generalized velocity ν that describe the model’s dominant nonlinearities. As an exam-
ple, the longitudinal aerodynamics of a fixed-wing aircraft depend on the angle-of-attack,
α = tan−1(w/u) = ρ(ν), which appears as the dominant nonlinearity (e.g., α and α2 are
important regressor functions).

To simplify control synthesis, we aim to formulate the nonlinear dynamics as a quasi-LPV
system that is affine in ρ, which we take to be a scheduling parameter (recognizing that ρ
is, in fact, a function of the system state). To this end, let

F̄ (ρ,ν, δ;ϑ) = A (ρ, δ;ϑ)ν + B(δ;ϑ) (5.4)

We then consider ρ(t) = ρ(ν(t)) to be a known, exogenous signal so that a first-order Taylor
series approximation of F̄ with respect to its second and third arguments about (ν0, δ0)
reads

F̄ (ρ,ν, δ;ϑ) ≈ F̄ (ρ,ν0, δ0;ϑ)+∂2F̄ (ρ,ν0, δ0;ϑ)(ν−ν0)+∂3F̄ (ρ,ν0, δ0;ϑ)(δ−δ0) (5.5)

where ∂jF̄ (·) is the Jacobian of F̄ with respect to its jth argument, evaluated at (·). Define

A(ρ;ϑ) := ∂2F̄ (ρ,ν0(ρ), δ0(ρ);ϑ) and B(ρ;ϑ) := ∂3F̄ (ρ,ν0(ρ), δ0(ρ);ϑ) (5.6)

where we have implicitly assumed the equilibrium generalized velocity ν0 and actuator values
δ0 can be expressed as functions of the model’s dominant nonlinearities ρ. Consider the
following assumption.

Assumption 5.1. The matrix functions A and B are affine in ρ.

It is important to realize nonlinearities exist in the system besides in the aerodynamics.
Therefore, we assume the aircraft’s steady-state roll and pitch angles remain small such that
their equilibrium values vary affinely in the model’s dominant nonlinearities, ρ.
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Assumption 5.2. All equilibrium values of φ0 and θ0 in a prescribed domain of interest
affinely depend on ρ.

Referring to Eq. (2.15), Assumption 5.2 is important in ensuring that Jacobians of the
drift vector field f = (fη,fν) affinely depend on ρ. Since there is no position or heading
angle tracking objective for system identification, consider the reduced configuration vector
ηr = [φ θ]T and let fηr(ηr,ν) be defined by the first two rows of Eq. (5.2). We then have
the Jacobians

Aηr,ηr(ρ) := ∂1fηr(ηr,0(ρ),ν0(ρ)), Aηr,ν(ρ) := ∂2fηr(ηr,0(ρ),ν0(ρ))

Aν,ηr(ρ) := ∂1fν(η0(ρ),ν0(ρ)), Aν,ν(ρ) := ∂2fν(η0(ρ),ν0(ρ))
(5.7)

Assumption 5.3. The roll and pitch angles remain sufficiently small such Aηr,ηr , Aηr,ν,
Aν,ηr , and Aν,ν are affine.

Assumptions 5.2 and 5.3 effectively define an implicit relationship between roll/pitch angles
and ρ such that the nonlinearities in RIB and LIB are replaced by linear dependence on φ
and θ (the small angle assumption) which in turn depend linearly on ρ.

5.2.2 Multirotor LPV Modeling
Recall the original goal of obtaining large-domain excitation data for multirotor aircraft
such as the quadrotor UAV shown in Figure 5.1. This aircraft will be used throughout the

Figure 5.1: Small quadrotor UAV

remainder of this Chapter to demonstrate the proposed methodology. It was built using a
DJI FlameWheel 450 frame and instrumented with a Cubepilot CubeOrange flight computer
running PX4 firmware. An onboard Raspberry Pi co-computer was included for control law
and excitation implementation over MAVROS. The quadrotor was instrumented with CAN
electronic speed controllers (ESCs) capable of rotor speed measurements as well as a real-
time kinematics (RTK) capable GNSS receiver. The instrumentation, co-computer setup,
and data processing for this aircraft followed the methods detailed in references [62], [136].



5.2. LPV Flight Dynamic Modeling 75

Since we are considering only smooth models, suppose Model 3 defines the generalized force
F . Since the aim here is control, however, the yawing moment is written in terms of the
actuator dynamics (4.35) like in Eq. (4.36). The parameters which we ultimately want to
identify are ϑ = [C(·)]. Comparing Model 3 with Eq. (5.3), we see the state variables that
capture the model’s nonlinearities are the components of body velocity v = ρ(ν). Therefore,
we choose to design a velocity reference signal vd that effectively covers the desired flight
envelope along. Under Assumption 5.1, the matrices A and B have an affine dependence on
vd = [ud vd wd]

T:

A = A0 +Auud +Avvd +Awwd (5.8a)
B = B0 +Buud +Bvvd +Bwwd (5.8b)

where the elements of the matrices A(·) and B(·) that are functions of the unknown parameter
vector, ϑ, are given in Appendix A.2.

Since the control input is the virtual actuator input uδ, one would need to augment the
rigid body dynamics with the actuator dynamics (4.35). Then with the same motivation as
Assumption 5.3, one would assume the linearization of these nonlinear actuator dynamics
about steady, translating flight conditions defined by (v0, δ0) depend affinely on v0. However,
the vehicle depicted in Figure 5.1 is equipped with motor speed controllers that regulate
motor speeds. Therefore, we assume the first-order, linear actuator model

δ̇ = −1

τ
(δ − u) (5.9)

where u is the commanded virtual actuator vector and τ is an uncertain time constant
(appended to the parameter vector ϑ).

An LPV flight dynamic model can now be formulated. Consider the state vector x =
[ηT
r νT δT]T = [φ θ vT ωT δT]T with perturbation

∆x =

⎡⎢⎢⎢⎢⎣
∆φ
∆θ
∆v
∆ω
∆δ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
φ− φ0(vd)
θ − θ0(vd)
v − vd
ω

δ − δ0(vd)

⎤⎥⎥⎥⎥⎦ (5.10)

Also, let
∆u = u− δ0(vd) (5.11)

be the small-perturbation control input. Then, an LPV model of the system is written as⎡⎣∆η̇r∆ν̇

∆δ̇

⎤⎦ =

⎡⎣Aηr,ηr Aηr,ν 0
Aν,ηr Aν,ν + M−1A M−1B
0 0 − 1

τ
I

⎤⎦
⏞ ⏟⏟ ⏞

A

⎡⎣∆ηr∆ν
∆δ

⎤⎦+

⎡⎣ 0
M−1Bcmd

1
τ
I

⎤⎦
⏞ ⏟⏟ ⏞

B

∆u (5.12)
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where

Bcmd =

[︃
0 0 0 0
0 0 0 Jz

τ
e3

]︃
More compactly, we have

∆ẋ = A(vd;θ)∆x+B(θ)∆u (5.13)

where θ is the vector of unknown elements of the constant matrices that define the affine
LPV system in Eq. (5.12).

5.2.3 Performance-Based Polytopic LPV Model
Since we are simultaneously stabilizing a reference trajectory and exciting the aircraft dy-
namics about it, we decompose the input vector, u, into two parts — a control input uc and
a normalized excitation input ue. In general, we write

u = uc +Rue (5.14)

for some constant invertible scaling matrix R that defines the effective excitation input
ũe = Rue. Referring to Eq. (5.11), the decomposition (5.14) also reads

∆u = uc − δ0(vd)⏞ ⏟⏟ ⏞
∆uc

+Rue (5.15)

We also define a performance output that represents some scaled value of the perturbation
from the desired velocity reference:

z = Q−1(v − vd) = Q
−1∆v (5.16)

for some constant invertible matrix Q. Thus, the LPV system (5.13) is now written as

∆ẋ = A(vd;θ)∆x+Bc(θ)∆uc +Be(θ)ue (5.17a)
z = C∆x (5.17b)

where Bc = B, Be = BR, and the output matrix C is constructed using Eq. (5.16).

Since every affine description can be written as a polytopic one,1 we express the LPV sys-
tem (5.17) as polytopic in the scheduling variable vd. Let

vd ∈ [vmin,vmax] =: Pvd (5.18)

1See reference [51] and the references therein.
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Then we can write the system (5.17) as the convex combination

Λ(vd,θ) :=

[︃
A(vd,θ) Bc(θ) Be(θ)
C 0 0

]︃
=

N∑︂
i=1

αi(vd)

[︃
Ai(θ) Bc(θ) Be(θ)
C 0 0

]︃

=:
N∑︂
i=1

αi(vd)Λi(θ)

(5.19)

where
N∑︂
i=1

αi(vd) = 1

This equation defines a polytope with N = 23 vertices given by the corners of the box
constraint in Eq. (5.18), where each vertex system, Λi(θ) is uncertain for

θ ∈ [θmin,θmax] =: Pθ (5.20)

Thus for each i ∈ {1, . . . , N}, we have

Λi(θ) =

Mi∑︂
j=1

βji (θ)

[︃
Aj
i Bj

c Bj
e

C 0 0

]︃
=:

Mi∑︂
j=1

βji (θ)Λ
j
i ,

Mi∑︂
j=1

βji (θ) = 1 (5.21)

Therefore, in order to design a control law, we need only identify small perturbation linear
models for each ith vertex of the polytopic LPV system. The uncertainty polytope vertices
are then defined using the parameter confidence intervals found in the parameter estimation
process. The resulting description of the system is a nested polytope, as depicted in Fig-
ure 5.2 for two scheduling parameters ρ1 and ρ2. In this figure, each point in the scheduling
parameter space contained within the blue polytope defines an uncertain LTI system. The
true LTI system at that parameter value is defined at some point in the orange polytope,
which lies in the uncertain parameter space (axes not shown).

5.3 Vertex Model Identification
In order to proceed with identification of the polytopic LPV model (5.19), we assume there
exists a set of baseline control laws that locally stabilize the set of steady flight conditions
defined by the vertices of the polytope, Pvd . This is often a model-free control law such
as proportional-integral-derivative (PID) control. Using this control law, flight test data
is collected at the vertices of Pvd . In this initial model identification process, the para-
metric uncertainty is also accurately characterized, yielding the polytopic uncertain LPV
model (5.21).
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Figure 5.2: Nested polytopic description

For each LPV vertex system, we identify the elements of each matrix Ai that depend on
unknown aerodynamic parameters, C(·), from flight data. The actuator time constant τ ,
however, was identified separately. For UAV shown in Figure 5.1, the motor time constant is
τ = 0.082± 0.002 seconds. Each of the vertex LTI models was identified using the equation-
error “gray-box” identification process detailed in Appendix A.3. This method solves the
parameter estimation problem using ordinary least-squares for the unknown elements of
each Ai.

Due to hardware implementation restrictions, the quadrotor LTI dynamics were excited us-
ing body velocity and yaw rate reference commands. This was mainly due to the inability to
command “broken-loop” excitation signals from the co-computer over MAVROS. Although
the use of velocity commands is not ideal because the resulting actuator states may be cor-
related, this choice of excitation makes initial model identification easier, and was found to
be sufficient. The reference command excitation signal was a 4-axis, 30 second multisine
signal with uniform power spectral density in the frequency range from 0.2 to 2 Hz, gener-
ated using SIDPAC software [111]. The multisine body velocity reference components were
superimposed over constant body velocity commands corresponding to the vertices of the
LPV polytope described in Section 5.2.

For this example, the maximum and minimum velocities were chosen to be +5 m/s and
−5 m/s, respectively, in all components. For the flight test data collection, the constant
body velocity reference was commanded for 10 seconds prior to excitation to allow for ex-
perimental determination of the equilibrium flight condition, (x0(vd),u0(vd)). Because the
baseline controller performance is limited, the equilibrium condition from flight data does
not perfectly align with the commanded velocity, as shown in Table 5.1. Note, in particular,
that for vertices corresponding to descending flight, the magnitude of the actual downward
velocity (w0) is much smaller than the commanded value.
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Table 5.1: Flight Data Vertex Equilibria

Vertex u0 v0 w0 φ0 θ0 δt,0 δa,0 δe,0 δr,0
[m/s] [m/s] [m/s] [m/s] [deg] [deg] [rad/s] [rad/s] [rad/s] [rad/s]

[−5 −5 −5]T −4.99 −5.04 −4.20 −10.87 9.28 691.4 −36.7 29.0 310.5
[+5 −5 −5]T 4.95 −5.04 −4.17 −10.44 −8.05 685.0 −34.1 −1.5 39.2
[−5 +5 −5]T −5.01 5.03 −3.95 8.55 8.11 689.0 −2.8 25.3 34.9
[+5 +5 −5]T 5.03 5.01 −4.00 8.04 −8.98 679.5 −5.8 −4.0 305.4
[−5 −5 +5]T −4.83 −4.68 2.88 −5.00 3.17 554.9 −45.0 28.0 367.6
[+5 −5 +5]T 4.73 −4.61 2.72 −5.14 −4.08 521.8 −34.6 −18.3 158.9
[−5 +5 +5]T −4.85 4.75 3.00 3.80 3.00 546.9 14.0 23.4 −9.8
[+5 +5 +5]T 4.64 4.73 2.86 3.85 −4.83 525.8 3.49 −15.8 298.1

Equation error least squares parameter estimation was conducted for each axis of each vertex
system using this flight data. The coefficient of determination is tabulated for these results
in Table 5.2. The model fit is poor for flight conditions where the quadrotor is descending
through its rotor wake. We note, however, that poor results are perfectly acceptable for the
proposed use, provided the parametric uncertainty is well characterized for the robust LPV
controller.

Table 5.2: LTI Equation Error Coefficient of Determination, R2 [%]

LTI State Equation Axis
Nominal Vertex u̇ v̇ ẇ ṗ q̇ ṙ
[−5 −5 −5]T 30.1 39.3 81.2 83.2 88.9 95.5
[+5 −5 −5]T 39.8 29.9 86.4 84.0 91.4 94.1
[−5 +5 −5]T 40.4 38.1 78.8 76.8 84.5 95.4
[+5 +5 −5]T 38.6 33.2 69.7 80.0 85.0 94.6
[−5 −5 +5]T 9.4 15.7 97.8 80.2 75.2 95.0
[+5 −5 +5]T 19.8 12.6 98.9 75.4 85.1 96.6
[−5 +5 +5]T 10.7 18.3 96.5 80.3 85.3 93.7
[+5 +5 +5]T 17.4 14.3 97.6 79.0 83.3 95.9

The identified LTI models along with the estimated parameter variances were used to define
the uncertain LPV model described by Eq. (5.17). This model was then validated against an
independent maneuver generated with a 4-axis multisine about the hover condition. From
this maneuver, the time derivative of the state vector from flight data, ẋf, was obtained
along with the modeled state derivative from Eq. (5.17), ẋm. The validation time history of
K samples is shown in Figure 5.3. Let ẋm,i and ẋf,i be the K × 1 column vectors contain-
ing the time history of the respective time derivatives for the ith state. Theil’s inequality



80 Chapter 5. Robust Control for System Identification of Unstable Aircraft

coefficient (TIC),

TIC =

√︂
1
K
(ẋm,i − ẋf,i)T(ẋm,i − ẋf,i)√︂
1
K
ẋT

m,iẋm,i +
√︂

1
K
ẋT

f,iẋf,i

(5.22)

and normalized root-mean squared error (NRMSE),

NRMSE =
1

range(ẋf,i)

√︃
1

K
(ẋm,i − ẋf,i)T(ẋm,i − ẋf,i) (5.23)

were then computed and are given in Table 5.3. The model validates well with small values
of TIC and NRMSE, especially in the translational dynamics. There is a slight bias apparent
in the rotational dynamics, causing larger values of TIC and NRMSE.
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Figure 5.3: LPV model independent validation
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Table 5.3: LPV model validation metrics

Equation u̇ v̇ ẇ ṗ q̇ ṙ
TIC 0.110 0.049 0.104 0.274 0.355 0.352

NRMSE 0.036 0.021 0.035 0.094 0.119 0.148

5.4 Signal Design
With the polytopic LPV model identified and parametric uncertainty characterized, we can
design the input signals to be used in the nonlinear model identification experiments. The
two signals that need to be designed are the body velocity reference, vd(t), that covers
the desired domain and the superposed command signal ue that is intended to excite the
vehicle dynamics about the reference motion. Since body velocity is an explanatory variable
which appears in regressor functions that also depend nonlinearly on actuator states, δ, we
want to ensure the vd and ue are uncorrelated. An efficient way to accomplish this task
is to design multisine signals for vd and ue concurrently such that they are orthogonal and
phase-optimized [112]. Inspired by Simmons et al. [135], we select the frequency range of
the velocity reference to be sufficiently low in the interval [0.01, 0.5] Hz, while the motor
excitation signals are higher-frequency, in the interval (0.5, 5] Hz. The upper limit on the
excitation frequency was chosen based on recommendations from Ivler et al. [78], but slightly
lower due to concerns about damaging the ESCs.2 Using SIDPAC’s mkmsswp.m function,
these signals were generated and are shown in Figure 5.4, normalized to unit amplitude,
with their spectral content given in Figure 5.5. The correlation coefficients and plots of this
signal are displayed in Figure 5.6, showing good coverage of the velocity space in the vd
signals and proper decorrelation overall.

Since the excitation input of T seconds is known, we can now make an informed choice of
the performance output weighting Q and excitation input weighting R. While in typical
H∞ control approaches the exogenous input is unknown, that is not the case here; we have
direct knowledge of the “disturbance” that is perturbing the vehicle motion from equilibrium
flight. We select tunable excitation input magnitudes ∆t, ∆a, ∆e, and ∆r. The R matrix is
chosen such that the normalized excitation input ue, defined to have unit energy√︄∫︂ T

0

uT
e (t)ue(t)dt = 1 (5.24)

results in the effective excitation inputs having magnitudes ∆t, ∆a, ∆e, and ∆r. Thus, R is
defined as

R =

√︃
nuT

2
diag(∆t,∆a,∆e,∆r) (5.25)

2Another approach for determining the appropriate frequency range is to analyze the vehicle’s response
to frequency sweep data in each of the virtual actuators.
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Figure 5.4: Velocity reference and motor excitation multisine signal
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Figure 5.5: Velocity reference and motor excitation multisine spectra

where nu = 4. Similarly, we define maximum body velocity perturbations ∆u, ∆v, and
∆w. The performance output, z = Q−1∆v, is then scaled such that the worst-case velocity
perturbations corresponding to step changes of ∆u, ∆v, and ∆w will generate a performance
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Figure 5.6: Velocity reference and motor excitation multisine correlation

output that also has unit energy. Therefore, Q is chosen to be

Q =
√︁
nzT diag(∆u,∆v,∆w) (5.26)

where nz = 3. Note the factor of 1/
√
2 that appears in R is not present in Q due to

the asymmetry of the worst-case step perturbations mentioned above. This normalization
provides a clear control objective of ensuring that the worst case energy gain from the
normalized excitation input, ue, to the normalized performance output, z, is no greater
than one. This performance objective is formalized as follows.

Recall a signal ξ is said to be an element of the vector space L2 if its L2 norm is finite,
meaning

∥ξ∥L2 =

√︄∫︂ ∞

0

ξT(t)ξ(t)dt <∞

We are interested in prescribing the worst-case L2-gain from ue ∈ L2 to z ∈ L2 for all
uncertain parameter values, θ ∈ Pθ. Thus, the design goal is stated as

sup
θ∈Pθ

∥ue ↦→ z∥∞ = sup
0 ̸=ue∈L2,θ∈Pθ

∥z∥L2

∥ue∥L2

= 1 (5.27)

Remark 5.1. The control objective stated above for system excitation is contrast with the
typical robust control problem where the aim is to suppress disturbances. Here, we wish to
create sufficiently rich “disturbances” and to only bound their effect on the vehicle response.
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5.5 Robust LPV Control Law Design
For the control law synthesis, we consider the polytopic uncertain LPV system (5.21) with-
out the position and yaw states since they are ignorable coordinates. For this system, a
static state feedback control law that satisfies Eq. (5.27) can readily be obtained. Adapting
Theorem 2 by Rotondo et al. [129] to the system in Eq. (5.17) for the case with no pole
placement constraints or H2 norm objectives, we have the following Lemma.

Lemma 5.1 (Theorem 2 by Rotondo et al. [129]). Consider the polytopic linear, parameter-
varying system with polytopic uncertainty in Eq. (5.17). Given a constant γ > 0, if there exist
symmetric positive definite matrices Xj

i , matrices Si, and a matrix H for all i ∈ {1, · · · , N}
and j ∈ {1, · · · ,Mi} such that⎡⎢⎢⎢⎣

U j
i +U

j
i

T −Xj
i +H

T −U j
i Bj

e HTCT

−Xj
i +H −U

j
i

T −(H +HT) 0 −HTCT

Bj
e

T
0 −I 0

CH −CH 0 −γ2I

⎤⎥⎥⎥⎦ ≺ 0 (5.28)

where
U j
i = Aj

iH +Bj
cSi

then the static state feedback

∆uc =K(vd)∆x, K(vd) =
N∑︂
i=1

αi(vd)Ki, Ki = SiH
−1 (5.29)

renders the H∞ norm of the closed-system less than γ for all vd ∈ Pvd and all θ ∈ Pθ.

Using this lemma, we can choose γ = 1 yielding a convex feasibility problem that can be
solved using a linear matrix inequity (LMI) solver. If the problem is not feasible, then there
are three remediations, all of which may be used. First, the input magnitudes ∆t, ∆a,
∆e and ∆r can be reduced. Second, the allowed output magnitudes ∆u, ∆v, and ∆w can
be increased. Third, the uncertainty in the identified LTI models can be reduced through
refined model identification.

For the quadrotor model identified in Section 5.3, we chose the tuning parameters
∆t = ∆a = ∆e = ∆r = 0.1

∆u = ∆v = ∆w = 5
(5.30)

The convex feasibility problem in Lemma 5.1 was solved using CVX [58], [59] in Matlab
with the Mosek solver [7]. The total number of scalar optimization variables was 332,920
with 45,768 constraints, and the total computation time3 was 52 seconds using default pre-
cision. The final result is eight feedback gain matrices that are used to compute K(vd)
from Eq. (5.29). In implementation, the equilibrium state and input vectors are similarly
computed as convex combinations of the vertex equilibria.

3Performed on a laptop with an Intel Core i7-1185G7 and 16GB DDR4-3200 memory
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5.6 Simulation
The synthesized robust LPV control law was simulated with the identified LPV model. First,
the uncertain parameters were evaluated at their nominal values, θ0, and the following closed-
loop system was simulated in Matlab using ode45:

ẋ = A(vd,θ0)(x− x0) +Bc(θ0)(uc − u0) +Be(θ0)κue + ẋ0 (5.31)

for some constant κ > 0. Note the designed input magnitudes of ∆t, ∆a, ∆e and ∆r need
not be used, as they are just used to normalize the performance objective. If their L2 norm
is doubled, for instance, then the worst-case L2 norm of the velocity perturbation is simply
doubled as well. The important result is that we prescribe this gain. For this demonstration,
however, the excitation multiplier κ was set to unity. The equilibrium state derivative, ẋ0,
in Eq. (5.31) was computed with

ẋ0 =
∂x0(vd)

∂vd

dvd

dt
(5.32)

In Figure 5.7, the body velocity reference is plotted in black dashed lines along with the
actual body velocity in solid lines, where the time history shows sufficient tracking of the
velocity reference command. The perturbation from the reference was also computed and is
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Figure 5.7: Nominal model simulation body velocity and reference

displayed in Figure 5.8. Here, the perturbations remain below an acceptable threshold and
qualitatively indicate good information content.

For each axis of Model 3, the correlation coefficients of the regressors were computed and are
shown in Figure 5.9. We see good decorrelation of most regressors, indicating that we should
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Figure 5.8: Nominal model simulation body velocity perturbation

be able accurately identify the aerodynamic parameters in Model 3 (assuming a sufficiently
high signal-to-noise ratio, etc.). The regressors that show extremely high correlation among
each other are those that depend on δ. This is expected since the magnitude of excitation
was small. To further decorrelate these regressors, one would either select a greater κ > 1
or increase the maximum velocity components in the vertex model identification.
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(wδt)eff = 4wδt− pδa− qδe

(wδa)eff = wδa− 2ℓ2pδt− ℓ2qδr/2
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(wδr)eff = wδr + pδe+ qδa

Figure 5.9: Nonlinear model regressor correlation



Chapter 6

Model-Based Wind Estimation

6.1 Introduction
As mentioned in Chapter 1, wind estimation enables scientists and engineers to solve crucial
problems across disciplines. When sensors such as air data probes or anemometers are able
to be used, direct approaches such as that by Lee et al. [93] can very accurately estimate
the wind and aircraft’s air-relative velocity. Of particular interest are approaches that do
not require specialized sensors such as anemometers or air data probes to measure wind and
air-relative velocity. The motion of the aircraft in response to external disturbances can be
used to continuously estimate the wind at the aircraft’s location. Minimal instrumentation
requirements make aircraft-based wind estimation at low altitudes viable for a variety of
aircraft sizes (e.g., small UAVs up to large commercial airplanes) and types (e.g., fixed-wing,
multirotor, and VTOL).

The development of model-based indirect wind estimation algorithms has brought finer tem-
poral resolution and greater accuracy to wind velocity estimates. For fixed-wing aircraft,
Lie and Gebre-Egziabher [96] developed a synthetic air data system using model-based es-
timation techniques. This approach improved accuracy and robustness to noise over wind
triangle-based approaches such as Langelaan et al. [91] that use static estimation. Tian et
al. [145] provides a thorough review of fixed-wing wind estimation techniques. More recent
approaches to fixed-wing wind estimation include Halefom et al. [67] which uses an unsteady
aerodynamic model, as well as Gahan et al. [50], which uses an H∞ filter to account for arbi-
trary finite-energy turbulence. The H∞ filtering approach was also extended in Gahan et al.
[48], [49] to account for parametric uncertainty using generalized Polynomial Chaos (gPC).

For multirotor aircraft, González-Rocha et al. [56] refined and generalized earlier model-
based approaches such as Xiang et al. [156] and Pappu et al. [124]. More recent multirotor
wind estimation efforts that use nonlinear aerodynamic models include Perozzi et al. [126]
and Chen and Bai [31]. Another approach to multirotor wind estimation by Azid et al. [13]
uses unknown input estimation techniques and treats the wind velocity as an unknown input
to the system. Other approaches such as those by Asignacion et al. [11] and Yu et al. [159]
use a disturbance observer to infer the wind velocity. Another noteworthy approach is Chen
et al. [32] which uses the invariant extended Kalman filter — a locally stable, statistically
informed version of a symmetry-preserving observer.

This chapter introduces key concepts and tools that enable the application of symmetry-
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preserving reduced-order observer theory (Chapter 3) in combination with nonlinear flight
dynamics and system identification (Chapter 4) to the problem of wind estimation for ma-
neuvering aircraft (Chapters 7 and 8). First, Section 6.2 discusses the wind field in which
aircraft fly and how it is experienced by the aircraft. Next, Section 6.3 extends the rigid-body
aircraft equations of motion in Section 2.4 to flight in turbulent wind. The stochastic model
that results can then be used as the process model in an estimator such as the extended
Kalman filter or a deterministic observer such as the symmetry-preserving reduced-order
observer presented in Chapter 3. Finally, Section 6.4 discusses the reconstruction of wind
velocity using specialized instrumentation to validate the wind estimation techniques pre-
sented in Chapters 7 and 8.

6.2 Wind Models
In general and independent of the aircraft’s motion, wind is a time-varying vector field,
W : R3 × R → R3, defined in the inertial frame. Let the instantaneous wind vector as
experienced by the aircraft be defined as

w(t) =W (q(t), t) (6.1)

The apparent wind w is defined by evaluating the wind field W at the aircraft’s position q
at time t as if the aircraft were absent. Using the chain rule, the time derivative of w is

dw
dt

=
∂W

∂t
(q, t) +∇W (q, t)

dq
dt

(6.2)

Note that we have arrived at Eq. (6.2) under the implicit assumption that the vehicle does
not affect the flow field in which it is immersed. When the aircraft’s velocity through a
wind field is significantly faster than the time rate of change of the eddies (such as for fixed-
wing aircraft), we can make a frozen turbulence assumption [40], meaning ∂W

∂t
(q, t) = 0.

Therefore, Eq. (6.2) becomes
ẇ = ∇W (q)q̇ (6.3)

Conversely, if the aircraft is not moving, the eddies are being convected over the aircraft by
the bulk flow. Therefore, ẇ would instead become

ẇ =
∂W (t)

∂t
(6.4)

where ∂W
∂t

is the time rate of change of wind velocity at the aircraft’s position due to the
convected eddies.

The above models for the apparent wind treat the aircraft as a single point in the wind field.
However, the gradient of the wind field on the scale of the aircraft also influences its motion.
Independent of the vehicle’s geometry, the body-frame wind field gradient for the aircraft’s
current pose (q and RIB at time t) is

ΦW (q,RIB, t) := R
T
IB∇W (q, t)RIB (6.5)
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Following the approach of Frost and Bowles [45], the body-frame gradient of the wind field
can be decomposed into its symmetric and skew-symmetric parts,

ΦW =
1

2
(ΦW +ΦT

W ) +
1

2
(ΦW −ΦT

W ) (6.6)

The skew-symmetric part 1
2
(ΦW −ΦT

W ) defines the angular velocity of the wind in the body
frame. As a vector-valued map,

ωW =
1

2
S−1(ΦW −ΦT

W ) (6.7)

While ωW is in fact a vector field assigning a body-frame wind angular velocity to each
time t and aircraft configuration (q,RIB), each aircraft will “experience” a different gradient
based on its geometry. Consider an arbitrary point r = [x y z]T defined relative to the CG
in the body frame. At an instant in time,

Wb(r) =

⎡⎣uW (x, y, z)
vW (x, y, z)
wW (x, y, z)

⎤⎦ := RT
IB(t)W (RT

IB(t)q(t) + r, t) (6.8)

is the body-frame wind field. In the case of traditional fixed-wing aircraft, for example, Etkin
[41] argues the only non-negligible gradients of the body-frame wind field Wb are

pw :=
∂wW
∂y

, qw := −∂wW
∂x

, and rw :=
∂vW
∂x

(6.9)

reflecting an assumption that

a) the body-longitudinal component of wind, uW , is constant/uniform over the entire
aircraft,

b) the body-lateral component of wind, vW , varies only along the aircraft’s length, and

c) the body-vertical component of wind, wW , varies only along the aircraft’s length and
span.

The vector ωw = [pw qw rw]
T as defined by Eq. (6.9) is called the apparent angular velocity of

the wind. Therefore, a fixed-wing aircraft experiences the apparent body-frame wind gradient

Φw :=

⎡⎣ 0 0 0
rw 0 0
−qw pw 0

⎤⎦ (6.10)

For other types of aircraft, Φw may take on a different structure, and ωw will be defined
accordingly. In general, the relationship between the body-frame wind field gradient ωW
and the apparent body frame wind gradient ωw depends on the aircraft’s geometry and
aerodynamics.
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Incorporation of the aircraft dynamics (2.14) into a model-based wind estimation scheme
requires the postulation of a model for the apparent wind dynamics (6.2). In general, we
cannot practically formulate a deterministic model that accurately describes the dynamics
of the apparent wind w and the wind gradient ΦW . The best we can do in a deterministic
setting is assume the wind field W is uniform and constant. In this case, the apparent wind
is constant (i.e., ẇ = 0) and the gradient terms vanish (i.e., ΦW ≡ 0 =⇒ ωr ≡ ω). Even
though the wind is assumed to be constant, this model does not preclude a wind estimation
scheme from estimating variations in the apparent wind velocity w.

In the stochastic setting, however, much effort has been spent in characterizing the statistics
of the apparent wind. Dryden and von Kármán turbulence models have been used for
decades and constitute a standard approach across flight mechanics disciplines [148]. These
models aim to characterize the frequency content of the body-frame wind fluctuations δwb

and the body-frame apparent angular velocity ωw. The fluctuations δwb satisfy a Reynolds
decomposition,

w = w̄ +RIBδwb (6.11)

where w̄ is the deterministic bulk flow, assumed to be constant on the time scales of motion
considered. With a state space realization, Dryden and approximations of von Kármán
turbulence models act as noise shaping filters and take the general form

ẋw = Awxw +Bwξw (6.12a)
δwb = Cδwb

xw (6.12b)
ωw = Cωwxw (6.12c)

where ξw is 6-dimensional continuous-time white noise with unit variance. As discussed in
Chapter 2, ξw is the distributional derivative of the standard Wiener process.

6.3 Wind Estimation Process Models
The wind model (6.12) may now be incorporated with the aircraft dynamics (2.14) to form
the process model used in a wind estimation scheme. Under a quasi-steady assumption, the
aerodynamic force F and moment M have the general dependence

F = F (vr,ωr, δ)

M =M(vr,ωr, δ)

where δ comprises the aircraft control inputs (e.g., control surface deflections and propeller
speeds) and

vr = v −RT
IBw (6.13)

ωr = ω − ωw (6.14)
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Equation (6.13) is known as the wind triangle. In model-based wind estimation it is advan-
tageous to include vr as a state variable instead of v since the apparent wind then appears
in the translational kinematics [56].

Taking the time derivative of wind triangle (6.13), we have

v̇r = v̇ − ṘT
IBw −RT

IBẇ

= v × ω +RT
IBg +

1

m
F (vr,ωr, δ) + S(ω)R

T
IBw −RT

IBẇ

= v × ω +RT
IBg +

1

m
F (vr,ωr, δ)− (RT

IBw)× ω −RT
IBẇ

= (v −RT
IBw)× ω +RT

IBg +
1

m
F (vr,ωr, δ)−RT

IBẇ

Again, making use of the wind triangle yields

v̇r = vr × ω +RT
IBg +

1

m
F (vr,ωr, δ)−RT

IBẇ (6.15)

Similarly for the air-relative angular velocity, the time derivative of Eq. (6.14) is

ω̇r = I
−1
(︁
(Iωr + Iωw)× (ωr + ωw) +M(vr,ωr, δ)

)︁
− ω̇w (6.16)

Altogether, aircraft motion in a non-uniform, time-varying wind field satisfies

q̇ = RIBvr +w (6.17a)
ṘIB = RIBS(ωr + ωw) (6.17b)

v̇r = vr × (ωr + ωw) +R
T
IBg +

1

m
F (vr,ωr, δ)−RT

IBẇ (6.17c)

ω̇r = I
−1
(︁
(Iωr + Iωw)× (ωr + ωw) +M(vr,ωr, δ)

)︁
− ω̇w (6.17d)

where ẇ and ω̇w satisfy Eqs. (6.11)–(6.12).

Before incorporating Eq. (6.17) into a model-based wind estimation scheme, it is critical to
recognize the force and moment models F (vr,ωr, δ) andM (vr,ωr, δ) are imperfect. That is,
the true force and moment differ from the modeled force and moment due to both parametric
error and unmodeled dynamics. As explained by Morelli and Klein [113, Ch. 5], principled
experiment design and model structure determination should yield independently distributed
model residuals. However, restricting ourselves to quasi-steady models implies the residuals

δF := Ftrue − F (vr,ωr, δ)

δM :=Mtrue −M (vr,ωr, δ)
(6.18)

will not exactly resemble white noise, but may exhibit additional frequency content asso-
ciated with unsteady aerodynamic modes. With experimentally-obtained data for δF and
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δM , one can thus design a shaping filter

ẋa = Aaxa +Baξa (6.19)
δF = CδFxa (6.20)
δM = CδMxa (6.21)

where ξa is 6-dimensional continuous-time white noise with unit variance.

Finally, the shaping filters for both the wind (Eq. (6.12a)) and aerodynamic modeling error
(Eq. (6.19)) are incorporated into the air-relative aircraft equations of motion (6.17) with
the appropriate substitutions to form the process model

q̇ = RIBvr +w (6.22a)
ṘIB = RIBS(ωr +Cωwxw) (6.22b)

v̇r = vr × (ωr +Cωwxw) +R
T
IBg +

1

m
F (vr,ωr, δ) +

1

m
CδFxa −RT

IBẇ (6.22c)

ω̇r = I
−1
(︁
(Iωr + ICωwxw)× (ωr +Cωwxw) +M (vr,ωr, δ)

)︁
+ I−1CδMxa −Cωw(Awxw +Bwξw) (6.22d)

ẋw = Awxw +Bwξw (6.22e)
ẋa = Aaxa +Baξa (6.22f)

While the techniques presented in this chapter are applicable to process model (6.22), we
choose to simplify the discussion and comparison among approaches by assuming the follow-
ing.

Assumption 6.1.

i) The angular velocity of the wind ωw is zero.

ii) The apparent wind w is Brownian motion.

iii) The aerodynamic force and moment modeling error are Gaussian, white noise.

Accordingly, consider a 9-dimensional Wiener process W = (W w,WM ,W F ) defined on a
probability space (Ω,F ,P) such that

dw(t) = σw(t)dW w
t , I−1δMdt = σM(t)dWM

t , and 1

m
δFdt = σF (t)dW F

t (6.23)

Let σ = diag(σw,σM ,σF ) ∈ R9×9. The matrix σσT is the infinitesimal covariance of the
scaled Wiener process σW . From another perspective, it is the power spectral density of
the continuous-time white noise σẆ , where Ẇ is the distributional derivative of w (see
Section 2.6).
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Under Assumption 6.1, Eq. (6.22) is now written as the stochastic differential equation

dq =
(︁
RIBvr +w

)︁
dt (6.24a)

dRIB =
(︁
RIBS(ω)

)︁
dt (6.24b)

dvr =
(︁
vr × ω +RT

IBg +
1
m
F (vr,ω, δ)

)︁
dt+ σFdW F −RT

IBσwdW w (6.24c)
dω = I−1

(︁
Iω × ω +M (vr,ω, δ)

)︁
dt+ σMdWM (6.24d)

dw = σwdW w (6.24e)

Here, the rotational kinematics dRIB can just be interpreted as shorthand for an ordinary
integral since no noise appears. We have not introduced the required machinery to describe
statistics of trajectories RIB(t); however, such a technical distinction does not matter since
the the wind estimation problem does not require the probabilistic characterization ofRIB(t).

Remark 6.1. Although not considered in this dissertation, there are several competing per-
spectives on how to describe stochastic dynamics on non-Euclidean manifolds. The most
straightforward approach is to consider an alternative to the Itô integral — the Stratonovich
integral — which obeys the chain rule of normal calculus. However, the result is no longer
non-anticipating; that is, the nice statistical properties of the Itô integral go away. Sticking
with the Itô integral, the approach of Gliklikh [52] and others (e.g., Belopolskaya and Dalecky
[21]) defines sections (a generalization of vector fields) of Itô bundles (a generalization of
the tangent bundle). The more modern approach of Armstrong and Brigo [9] involves jet
bundles and describes SDEs using 2-jets. Analogous to a coordinate-free second-order Taylor
series expansion, fields of these 2-jets define infinitesimal quadratic curves at each point
on the manifold, describing the stochastic evolution of the state. Yet another approach by
Emery [39] is using diffusors (second-order tangent vectors) and the Schwartz morphism —
a special extension of the tangent map for second-order tangent spaces.

6.4 Wind Reconstruction
As part of the development process for wind estimation techniques, it can be instrumental
to have a truth source for comparison. For applications where the mean wind velocity is of
interest, a stationary anemometer or remote sensing solution (e.g., Doppler LiDAR) is suffi-
cient. The model-based wind estimation techniques presented in this dissertation, however,
aim to also accurately estimate the wind fluctuations. In this case, an in situ measurement
must be used to validate the wind estimates. For multirotor aircraft, sonic anemometers are
often placed on a mast sufficiently high above the rotors [123]. For fixed-wing aircraft, air
data units (ADUs) are instead used to reconstruct the wind velocity. A vaned air data unit
was designed and manufactured to validate the wind estimation approaches in this disser-
tation. Depending on the aircraft, it was either mounted out the nose (Figure 6.1a) or out
each wingtip (Figure 6.1b). Each ADU consists of two 3D-printed vanes attached to 12-bit
(4,096-position) PWM magnetic rotary encoders that are sampled at a rate of 200 Hz by a
microcontroller. The vane angles are transmitted to the autopilot over the CAN bus using a
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(a) MTD air data unit (b) eSPAARO air data unit

Figure 6.1: Vaned air data unit mounting locations

custom PX4 driver. The tip of the ADU is a 3D-printed Kiel probe connected to a DLVR-10
differential pressure sensor, also communicating with the autopilot over the CAN bus, with
the sensor sampled at 50 Hz.

Let V , α, and βf be the airspeed, angle-of-attack, and flank angle, respectively, reported
by the ADU. First, the angle-of-attack and flank angle data were low-pass filtered with a
cutoff frequency of 10 Hz to filter out any structural dynamics of the wing. Next, the autopi-
lot’s inertial velocity estimates vi (average standard deviation of [0.01 0.01 0.005]T m/s),
attitude estimates (average attitude estimate standard deviation of [0.004 0.004 0.013]T ∈
TR̂IB

SO(3)), and angular velocity measurements from the calibrated gyroscope (noise and
bias removed) were used to reconstruct the apparent wind velocity as

w = vi −RIB (vADU − ω × rADU) (6.25)

where
vADU = RBW(α, β)e1V

is the air-relative velocity at the geometric center of the two ADU vanes, whose position in
the body frame is denoted rADU. The rotation matrix RBW(α, β) = e−S(e2)αeS(e3)β, which
maps free vectors from the wind frame to the body frame, is parameterized by the measured
angle-of-attack α and the sideslip angle

β = tan−1(tan(βf ) cos(α))

The accuracy of the reconstructed wind velocity can be characterized by propagating mea-
surement uncertainties through Eq. (6.25) as done by Halefom et al. [67].



Chapter 7

Symmetry-Preserving Reduced-Order
Wind Observers

7.1 Introduction
As described in Chapter 6, typical approaches to model-based wind estimation produce es-
timates of not only wind and air-relative velocity, but also known signals such as position,
attitude, and angular velocity. In many cases, there is no practical use in re-estimating
this measured part of the aircraft’s state using full-order observers and estimators. Instead,
reduced-order observers are of great interest in which only the unmeasured part of the state is
estimated. This approach can decrease computational complexity and simplify the observer
design process. As demonstrated in Section 3.6, aircraft dynamics possess symmetries. In
particular, they are invariant under rotations and translations (e.g., the standard orienta-
tion of the body frame with respect to the physical airframe corresponds to just one of
many valid coordinate representations). Motivated by these observations, we now apply the
symmetry-preserving, reduced-order observer theory of Chapter 3 to estimate wind velocity
for maneuvering aircraft. This chapter is largely based on references [77] and [71].

7.2 A Symmetry-Preserving Reduced-Order Wind Ob-
server

7.2.1 Problem Setting
In this section, we consider the deterministic aircraft dynamics in wind; that is, the noise
terms in Eq. (6.24) are neglected. To simplify the observer gain selection, we also make the
following assumption on the aircraft’s aerodynamics.

Assumption 7.1. The aerodynamic force and moment satisfy

F = F0 + Fvvr + Fωω (7.1)
M =M0 +Mvvr +Mωω (7.2)

where F(·) and M(·) are known “inputs” that vary with the aircraft state and control.

Equations (7.1)–(7.2) reflect a linearization of force and moment nonlinearities comprising
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the unknown air-relative velocity vr. Practical considerations and consequences of Assump-
tion 7.1 are discussed in Section 7.6.3.

Altogether, the aircraft equations of motion used in the design of a symmetry-preserving
reduced-order wind observer are

q̇ = RIBvr +w (7.3a)
ṘIB = RIBS(ω) (7.3b)
ω̇ = I−1 (Iω × ω +M0 +Mvvr +Mωω) (7.3c)

v̇r = vr × ω +RT
IBg +

1

m
(F0 + Fvvr + Fωω) (7.3d)

ẇ = 0 (7.3e)

It is often the case that aircraft are instrumented with an accelerometer, gyroscope, mag-
netometer, and inertial positioning system (i.e. vision-based or GNSS) such that position,
attitude, and angular velocity measurements can be readily obtained with negligible noise
from a low-level estimation algorithm. Therefore, we make the following assumption.

Assumption 7.2. The aircraft’s position q, attitude RIB, and angular velocity ω are ob-
tained without error.

Thus, we take y = (q,RIB,ω) ∈ Y = SE(3) × R3 to be the measured part of the state and
x = (vr,w) ∈ X = Rn to be the unmeasured part. Here, the dimension of Y is p = 9 (SE(3)
is a 6-dimensional smooth manifold), and the dimension of X is n = 6. The total state space
of the system is the (n + p = 15)-dimensional manifold X × Y . As described in Chapter 3,
the input u for the purpose of observer design is not necessarily flight control inputs as
in the vector δ above; rather it is a collection of known quantities on which a particular
transformation group acts. In this case, it is composed of all quantities, other than the system
state, that are expressed in either FB or FI. That is, u = (g, I,M0,Mv,Mω,F0,Fv,Fω) ∈
U . With these definitions, the aircraft dynamics (7.3) are in the form of Eq. (3.1), where
the vector field (f ,h) in Eq. (3.1) is appropriately constructed from the right-hand side of
Eq. (7.3).

Remark 7.1. Note that inertial velocity measurements from GNSS are not included in the
measured part of the state, y. For the state variables considered here, position data is better
suited for obtaining a stable observer. As discussed in Section 7.3.3, however, inertial velocity
measurements are still useful in practical implementation for approximating continuous-time
position data between GNSS samples. It remains to be explored whether other combinations
of state variables may benefit from including inertial velocity in y rather than position.

7.2.2 SO(3)-Invariance of the Aircraft Dynamics in Wind
First, we aim to find a transformation group {ϕg,ϱg,ψg}g∈G under which the system (7.3)
is invariant. Here, ϕg acts on the unmeasured part of state, ϱg acts on the measured part,
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and ψg acts on the input. As described in Section 2.4, the configuration of the rigid-body
aircraft is a point on SE(3), the special Euclidean group of 3-dimensional translations and
rotations. Therefore, SE(3) is a natural choice of Lie group G for which a transformation
group is defined (as done by Chen et al. [32]). However, since position does not explicitly
appear on the right-hand side of Eq. (7.3), choosing G = SO(3) to define the transformation
group is sufficient for the construction of a reduced-order observer.

Furthermore, we recognize the aircraft dynamics are invariant under not just a single trans-
formation group, but rather a family of transformation groups. The two most natural choices
from this family are given as follows.

Proposition 7.1. The aircraft dynamics (7.3) are SO(3)-invariant under the transformation
groups

ϕg(x) =

(︃
vr
Rgw

)︃
=:

(︃
ϕvr
g (x)
ϕwg (x)

)︃

ϱg(y) =

⎛⎝ Rgq
RgRIB
ω

⎞⎠ =:

⎛⎝ ϱqg(y)
ϱRIB
g (y)
ϱωg (y)

⎞⎠ ψg(u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rgg
I
M0

Mv

Mω

F0

Fv
Fω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψg
g(u)
ψI
g(u)

ψM0
g (u)

ψMv
g (u)

ψMω
g (u)
ψF0
g (u)

ψFv
g (u)

ψFω
g (u)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.4.I)

and

ϕg(x) =

(︃
Rgvr
w

)︃
=:

(︃
ϕvr
g (x)
ϕwg (x)

)︃

ϱg(y) =

⎛⎝ q
RIBR

T
g

Rgω

⎞⎠ =:

⎛⎝ ϱqg(y)
ϱRIB
g (y)
ϱωg (y)

⎞⎠ ψg(u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g
RgIR

T
g

RgM0

RgMvR
T
g

RgMωR
T
g

RgF0

RgFvR
T
g

RgFωR
T
g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψg
g(u)
ψI
g(u)

ψM0
g (u)

ψMv
g (u)

ψMω
g (u)
ψF0
g (u)

ψFv
g (u)

ψFω
g (u)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.4.B)

where g = Rg ∈ SO(3).

Both transformation groups characterize the rotational symmetry of the aircraft dynamics.
Since the transformation group defined by Eq. (7.4.I) consists of rotations of inertial frame
quantities, we call it the inertial transformation group. This transformation group reflects
the fact that the orientation of the inertial frame is arbitrary. Conversely, Eq. (7.4.B) consists
of rotations of body frame quantities and is thus called the body transformation group. Its
definition recognizes that the orientation of the body frame is also arbitrary as long as
parameters (e.g., aerodynamic force and moment parameters) are appropriately expressed
in the rotated coordinate frame. When appropriate, we will append equation numbers with
“I” or “B” when they apply to transformation groups (7.4.I) or (7.4.B), respectively.
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Proof of Proposition 7.1. First, note that the tangent maps of the transformation
groups (7.4.I) and (7.4.B) at (x,y,u) applied to f(x,y,u) and h(x,y,u) respectively satisfy

Txϕg
(︁
f(x,y,u)

)︁
=

(︃
fvr(x,u)
Rgfw(x,u)

)︃
and Tyϱg

(︁
h(x,y,u)

)︁
=

⎛⎝ Rgfq(x,u)
RgfRIB(x,u)
fω(x,u)

⎞⎠ (7.5.I)

Txϕg
(︁
f(x,y,u)

)︁
=

(︃
Rgfvr(x,u)
fw(x,u)

)︃
and Tyϱg

(︁
h(x,y,u)

)︁
=

⎛⎝ fq(x,u)
fRIB(x,u)R

T
g

Rgfω(x,u)

⎞⎠ (7.5.B)

We must show that the expressions above are equal to the evaluation of f and h at the
transformed point (ϕg(x),ϱg(u),ψg(u)). Starting with the relative velocity dynamics, we
have

fvr(ϕg(x),ϱg(y),ψg(u)) = vr × ω +RT
IBR

T
gRgg +

1

m
(F0 + Fvvr + Fωω)

= fvr(x,y,u)
(7.6.I)

fvr(ϕg(x),ϱg(y),ψg(u)) = Rgvr ×Rgω +RgR
T
IBg

+
1

m

(︁
RgF0 +RgFvR

T
gRgvr +RgFωR

T
gRgω

)︁
= Rg

(︁
vr × ω +RT

IBg +
1
m
(F0 + Fvvr + Fωω)

)︁
= Rgfvr(x,y,u)

(7.6.B)

The invariance of the apparent wind velocity dynamics ẇ = 0 is trivially satisfied. For the
position kinematics, we write

fq(ϕg(x),ϱg(y),ψg(u)) = RgRIBvr +Rgw = Rgfq(x,y,u) (7.7.I)

fq(ϕg(x),ϱg(y),ψg(u)) = RIBR
T
gRgvr +w = fq(x,y,u) (7.7.B)

The attitude kinematics at the transformed point satisfy

fRIB(ϕg(x),ϱg(y),ψg(u)) = RgRIBS(ω) = RgfRIB(x,y,u) (7.8.I)

fRIB(ϕg(x),ϱg(y),ψg(u)) = RIBR
T
gS(Rgω)

= RIBR
T
gRgS(ω)R

T
g

= fRIB(x,y,u)R
T
g

(7.8.B)

In the second line of Eq. (7.8.B), we have used the property that S(Rω) = RS(ω)RT for
any R ∈ SO(3) and ω ∈ R3. Finally, the angular velocity dynamics are invariant since

fω(ϕg(x),ϱg(y),ψg(u)) = I
−1 (Iω × ω +M0 +Mvvr +Mωω) = fω(x,y,u) (7.9.I)
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fω(ϕg(x),ϱg(y),ψg(u)) =
(︁
RgIR

T
g

)︁−1(︁
RgIR

T
gRgω ×Rgω

+RgM0 +RgMvR
T
gRgvr +RgMωR

T
gRgω

)︁
= RgI

−1 (−S(ω)Iω +M0 +Mvvr +Mωω)

= Rgfω(x,y,u)

(7.9.B)

Therefore, the transformed tangent vectors in Eq. (7.5) satisfy the statement (2.5) of G-
invariance.

7.2.3 Invariant Pre-Observer
Recall the design of a symmetry-preserving reduced-order observer requires the assumption
that the moving frame depends only on the measured part of the transformation group,
ϱg(y). Since the measured attitude state space of the system is G itself, the moving frame
γ : Y → G is naturally defined by the element of G = SO(3) whose action on the rotational
configuration yields the identity element, e = I. Therefore, the normalization equation (3.8)
is written for the two transformation groups as

RhRIB = I (7.10.I)
RIBR

T
h = I (7.10.B)

which implies

h = γ(y) = RT
IB (7.11.I)

h = γ(y) = RIB (7.11.B)

are the group elements that define moving frames with the equivariance property (2.4). The
moving frame will be used to construct an invariant mapping from the measured states to
estimates of the unmeasured states, which is then used to define the form of the symmetry-
preserving reduced-order observer and obtain sufficient conditions for its stability.

Recalling the discussion in Chapter 3, the key to preserving symmetries in the pre-
observer (3.9) is the observer map β, which commutes with the transformation group. From
Lemma 3.1, we have

β(y) = ϕγ(y)−1

(︂
ℓ
(︁
ϱγ(y)(y)

)︁)︂
(3.13)

where ℓ : Y → X is a smooth map. Inspecting the form for β in Eq. (3.13), we notice that
ϱRIB
γ(y)(y) = I. Therefore, we need only consider ℓ : Y \ SO(3)→ X . Let

ℓ(y) =

[︃
Lqvr Lωvr

Lqw Lωw

]︃
⏞ ⏟⏟ ⏞

L

[︃
q
ω

]︃
(7.12)
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where L is the observer gain matrix which we allow to vary with time. With this choice of
the gain map ℓ, the observer map (3.13) becomes

β(y) =

[︃
LqvrR

T
IBq +L

ω
vrω

RIBL
q
wR

T
IBq +RIBL

ω
wω

]︃
(7.13.I)

β(y) =

[︃
RT

IBL
q
vrq +R

T
IBL

ω
vrRIBω

Lqwq +L
ω
wRIBω

]︃
(7.13.B)

Next, Theorem 3.1 is used to obtain an expression for α that yields a G-invariant pre-
observer. For the aircraft in wind, we write the components of α as

αvr(z,y,u) = v̂r × ω +RT
IBg +

1

m
(F0 + Fvv̂r + Fωω)−LqvrR

T
IB (RIBv̂r + ŵ)

−LωvrI
−1 (Iω × ω +M0 +Mvv̂r +Mωω)

+LqvrS(ω)R
T
IBq − L̇qvrR

T
IBq − L̇ωvrω (7.14a.I)

αw(z,y,u) = −RIBL
q
wR

T
IB (RIBv̂r + ŵ)−RIBS(ω)L

ω
wω

−RIBL
ω
wI

−1 (Iω × ω +M0 +Mvv̂r +Mωω)

−RIB (S(ω)Lqw −LqwS(ω))RT
IBq −RIBL̇

q
wR

T
IBq −RIBL̇

ω
wω (7.14b.I)

and

αvr(z,y,u) = v̂r × ω +RT
IBg +

1

m
(F0 + Fvv̂r + Fωω)−RT

IBL
q
vr (RIBv̂r + ŵ)

−RT
IBL

ω
vrRIBI

−1 (Iω × ω +M0 +Mvv̂r +Mωω) + S(ω)R
T
IBL

q
vrq

+ S(ω)RT
IBL

ω
vrRIBω −RT

IBL̇
q
vrq −R

T
IBL̇

ω
vrRIBω (7.14a.B)

αw(z,y,u) = −Lqw (RIBv̂r + ŵ)−LωwRIBI
−1 (Iω × ω +M0 +Mvv̂r +Mωω)

− L̇qwq − L̇ωwRIBω (7.14b.B)

for transformation groups (7.4.I) and (7.4.B), respectively, where

v̂r = zvr +L
q
vrR

T
IBq +L

ω
vrω

ŵ = zw +RIBL
q
wR

T
IBq +RIBL

ω
wω

(7.15.I)

v̂r = zvr +R
T
IBL

q
vrq +R

T
IBL

ω
vrRIBω

ŵ = zw +Lqwq +L
ω
wRIBω

(7.15.B)
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7.2.4 Invariant Observer
We now aim to choose the gain matrix L such that the pre-observer given by
Eqs. (7.14)–(7.15) is a G-invariant reduced-order observer. That is, we seek sufficient condi-
tions for which the zero-error manifold Z defined in Eq. (3.12) is asymptotically attractive.
Given by Eq. (3.19), the invariant error coordinates are

ηvr = zvr +L
q
vrR

T
IBq +L

ω
vrω − vr

ηw = RT
IBzw +LqwR

T
IBq +L

ω
wω −RT

IBw
(7.16.I)

ηvr = RIBzvr +L
q
vrq +L

ω
vrRIBω −RIBvr

ηw = zw +Lqwq +L
ω
wRIBω −w

(7.16.B)

Theorem 3.2 states sufficient conditions for Eqs. (7.14)–(7.15) to be a symmetry-preserving
reduced-order observer; that is, x̂ → x as t → ∞. To apply Theorem 3.2, we expand and
simplify Eq. (3.21) using the invariant error coordinates (7.16) to obtain the invariant error
system

η̇vr = −S(ω)ηvr +
1

m
Fvηvr −Lqvr (ηvr + ηw)−LωvrI

−1Mvηvr

η̇w = −Lqw (ηvr + ηw)−LωwI−1Mvηvr − S(ω)ηw
(7.17.I)

η̇vr =
1

m
RIBFvR

T
IBηvr −Lqvr (ηvr + ηw)−LωvrRIBI

−1MvR
T
IBηvr

η̇w = −Lqw (ηvr + ηw)−LωwRIBI
−1MvR

T
IBηvr

(7.17.B)

Notice that for the body transformation group, the transformed input signal appears as
RIBFvR

T
IB = UFv and RIBI

−1MvR
T
IB = UIUMv . Also, the time derivative of the observer

gain matrix does not appear in the invariant error dynamics, allowing for flexibility in its
selection.

We now aim to choose the gain matrix L to render the origin η = 0 asymptotically stable.
Equation (7.17) can be viewed as a linear, time-varying (LTV) system since Y = ϱγ(y)(y)
and U = ψγ(y)(u) are known signals. Therefore, the stabilization of the invariant error
system is reduced to LTV observer design for the fictitious system

ξ̇ = A(t)ξ

ζ = C(t)ξ
(7.18)

where

A(t) =

[︃
−S(ω(t)) + Fv(t)/m 0

0 −S(ω(t))

]︃
, C(t) =

[︃
I I

I−1Mv(t) 0

]︃
(7.19.I)

A(t) =

[︃
RIB(t)Fv(t)R

T
IB(t)/m 0

0 0

]︃
, C(t) =

[︃
I I

RIB(t)I
−1Mv(t)R

T
IB(t) 0

]︃
(7.19.B)
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Using L(t) as the linear observer gain matrix for the system (7.18), the closed-loop error
dynamics

η̇ = (A(t)−L(t)C(t))η (7.20)

are exactly the invariant error system (7.17). Therefore, one must simply choose positive
definite matrices Q and R, propagate the differential Riccati equation

Ṗ (t) = A(t)P (t) + P (t)AT(t)− P (t)CT(t)R−1C(t)P (t) +Q (7.21)

and let
L(t) = P (t)CT(t)R−1 (7.22)

The preceding discussion (and results by Anderson and Moore [5, Ch. 8]) proves the following
result.

Theorem 7.1. If the pair (A(t),C(t)) is observable, then the SO(3)-invariant pre-
observer (3.9)–(3.10) with α given by Eq. (7.14) and L(t) satisfying Eq. (7.22) is an ex-
ponentially stable SO(3)-invariant observer for the aircraft in wind given by Eq. (7.3).

Remark 7.2. The observability of (A(t),C(t)) is not overly restrictive. Most nonlinear
aerodynamic models for both fixed-wing and multirotor aircraft satisfy this observability re-
quirement. For example, constructing Fv and Mv from Model 3 or the large-domain fixed-
wing model given by Grauer and Morelli [60], both yield observability.

7.3 Demonstration of Theoretical Guarantees and Ro-
bustness

The symmetry-preserving reduced-order wind observer was implemented on simulated flight
data for the small quadrotor UAV considered in Chapter 4. In particular, we used Model 3
to ensure smoothness of F and M so that the decomposition in Assumption (7.1) is well-
defined.

7.3.1 A Note on Tuning
The tuning parameters Q and R can be selected in a number of ways, albeit less intuitively
than a linear quadratic regulator or a Kalman-Bucy filter since the state and output of the
LTV system (7.18) do not hold similar physical meaning. In this work, we chose to select Q
andR using an inverse optimality approach. LetA0 andC0 be the constant matrices defined
by evaluating Eq. (7.19) at hover (or any other nominal flight condition). Then, choose a
gain matrix Lpp to place the poles of the LTI nominal error system η̇ = (A0 − LppC0)η
at some desired location. We chose to place the poles in a first-order low-pass Butterworth
configuration with a cutoff frequency of 4 rad/s. Let L0 = P0C

T
0R

−1 where P0 satisfies the
algebraic Riccati equation A0P0 + P0A

T
0 − P0C

T
0R

−1C0P0 +Q = 0. Using a constrained
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optimization solver, the inverse optimality problem is solved by numerically finding Q and
R that minimize the cost function

J =
1

2
Tr
[︁
(L0 −Lpp)

T(L0 −Lpp)
]︁

(7.23)

while constraining Q and R to be positive definite and norm bounded (e.g., ∥Q∥ ≤ 100
and ∥R∥ ≤ 100). This tuning approach was found to yield favorable results across many
simulation scenarios. All results in this section were obtained using

Q =

⎡⎢⎢⎢⎢⎢⎣
90.8 0 0 0 0 0
0 90.8 0 0 0 0
0 0 36.4 0 0 −23.8
0 0 0 90.8 0 0
0 0 0 0 90.8 0
0 0 −23.8 0 0 80.4

⎤⎥⎥⎥⎥⎥⎦ , R =

⎡⎢⎢⎢⎢⎢⎣
11.4 0 0 0 −2.0 0
0 11.4 0 −2.1 0 0
0 0 7.0 0 0 0
0 −2.1 0 0.8 0 0
−2.0 0 0 0 0.7 0
0 0 0 0 0 50.3

⎤⎥⎥⎥⎥⎥⎦ (7.24)

7.3.2 Demonstration of Theoretical Guarantees
The symmetry-preserving reduced-order wind observers detailed in this section were first
implemented in simulation with all assumptions satisfied in order to demonstrate the theo-
retical convergence guarantees. That is, the aerodynamic force and moment perfectly satisfy
Assumption 7.1 and the wind is constant. For this ideal case, we decompose Model 3 ac-
cording to Eq. (7.64) and evaluate the argument vr in F0, Fv, etc. to a nominal value of
zero. Note this only affects the few terms in the aerodynamic model that are nonlinear
in air-relative velocity. The aircraft dynamics with the idealized aerodynamic model were
simulated in a uniform wind field with components WN = 10 m/s, WE = −10 m/s, and
WD = 0 m/s using Matlab. To showcase the nonlinear stability guarantees and global
nature of the observer, a large-amplitude multisine input excitation was injected on top of
the feedback control signal (Figure 7.1a). The multisine was constructed with frequencies
ranging from 0.01 to 1 Hz to effectively explore the state space as seen in Figure 7.1.

The observability condition of Theorem 7.1 was verified for the simulated trajectory. The
LTV observability Gramian Go(t0, tf ) was numerically constructed backwards in time from
tf = 20 to t0 = 0. As shown in Figure 7.2, the minimum eigenvalue of the observability
Gramian is bounded away from zero backwards in time, implying observability of (A(t),C(t))
on the interval [t0, 20) for any t0 ≥ 0 [130, Ch. 9]. Due to the structure of A and C, the
minimum eigenvalue λmin(Go) is the same for both transformation groups. Also shown in
Figure 7.2 is the minimum eigenvalue of the observability Gramian for the nominal hover
flight condition in zero wind, showing persistent maneuvering is not a requirement for this
observer (as it is for some model-free approaches) — the reason being that the observer’s
stability holds uniformly in the measured states and inputs.

Next, the observers constructed using both the inertial and body transformation groups were
numerically simulated. The resulting estimates of air-relative and wind velocity are shown
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Figure 7.1: Ideal simulation in uniform wind
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Figure 7.2: Minimum eigenvalue of the LTV observability Gramian on the interval [t0, 20]

in Figures 7.3 and 7.4, respectively. These results demonstrate the guaranteed exponential
convergence despite large variations in the aircraft state. Since all assumptions were
satisfied, the observers designed using both transformation groups yielded nearly identical
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(b) Body transformation group

Figure 7.3: Estimated air-relative velocity (ideal case)
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(a) Inertial transformation group
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ŵN

ŵE
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Figure 7.4: Estimated wind velocity (ideal case)

results. This parity is expected since the same rotational symmetry of the dynamics is
equivalently preserved — just from the viewpoint of different reference frames. The practical
difference between using transformation groups (7.4.I) and (7.4.B) is the coordinate frame
in which the observer mapping ℓ is expressed.

7.3.3 Robustness Analysis
To explore the differences between transformation groups (7.4.I) and (7.4.B) and to stress the
proposed observer, the aircraft was simulated in von Kármán turbulence using the full nonlin-
ear aerodynamic model, violating the observer’s assumptions. Additionally, Assumption 7.2
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was violated by introducing measurement noise (the same realization for all simulations).
Specifically, the measurements of q, RIB, and ω respectively satisfied

yq = q + w̃q, yRIB = RIB exp(S(w̃RIB)), yω = ω + w̃ω (7.25)

where w̃q, w̃RIB , and w̃ω are zero-mean, Gaussian, continuous-time, white noise with power
spectral densities 2× 10−3I m2

Hz , 10−6I 1
Hz , and 5× 10−6I (rad/s)2

Hz , respectively. Since the tran-
sient performance and steady state accuracy of all components of air-relative and wind veloc-
ity estimates were similar, we only discuss the North component of wind velocity. The results
for this scenario are shown in Figure 7.5a, were we see that measurement noise corrupts the
resulting estimate but does not cause an unbounded response. For comparison, the same
simulation scenario with measurement noise removed is shown in Figure 7.5b. Here, we see
good tracking of the fluctuations in wind velocity — an important aim in this work. While
proof of stability for this case is beyond the scope of this dissertation, the results shown are
indicative of the observer’s inherent robustness to disturbances, as expected from the fact
that the undisturbed invariant error system is globally exponentially stable [86, Lemma 5.1].
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Figure 7.5: Estimated North wind velocity using full nonlinear aerodynamic model with von
Kármán turbulence

One caveat about the proposed observer is that care must be taken in its numerical imple-
mentation. For example, it was found that the use of a fixed-step Runge-Kutta integration
scheme necessitated small time steps (10−4 seconds). This issue may be alleviated by using
adaptive step sizing as well as methods that leverage the Jacobian of the observer dynam-
ics. A similar problem encountered in practical implementation is that position data is often
available at a much lower rate than angular rate and attitude data. To investigate, a compar-
ison among position data rates of 8 Hz, 20 Hz, and 50 Hz was conducted using the idealized
simulation discussed in Section 7.3.2. The results for the North wind velocity estimate are
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shown in Figure 7.6. In this case, the most recent position data was held constant between
samples. As the sampling rate increases, we recover the continuous-time results. To improve
performance for sampled data, predictions of position should be propagated between samples
using GNSS velocity data. This is an inexpensive computation and is expected to greatly
improve accuracy.
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Figure 7.6: North wind velocity estimate using sampled position data

From these results, the benefit of using one transformation group over another is not appar-
ent. To quantify the small difference between transformation groups, the state estimate root
mean square error

RMSE =

(︃
1

tf − t0

∫︂ tf

t0

∥x̂(t)− x(t)∥2
)︃ 1

2

(7.26)

was computed and is tabulated in Table 7.1. Across all the simulation scenarios considered,

Table 7.1: Simulated state estimate root mean square error in m/s

Transformation Group
Simulation Scenario Inertial Body
Ideal (Figure 7.4) 0.528 0.532
Von Kármán plus Noise (Figure 7.5a) 0.894 0.902
Von Kármán (Figure 7.5b) 0.774 0.779
8 Hz Position Data (Figure 7.6) 1.260 1.272
20 Hz Position Data (Figure 7.6) 0.881 0.889
50 Hz Position Data (Figure 7.6) 0.686 0.691

the inertial transformation group produced marginally more accurate estimates. This differ-
ence is more significant when applying the proposed observers to flight data, as explored in
Section 7.6.
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7.4 Stochastic Symmetry-Preserving Reduced-Order
Wind Observer

The symmetry-preserving reduced-order wind observer (7.14)–(7.15) was derived ignoring
all sources of noise in the aircraft dynamics. Now, we relax this assumption and extend the
results of Section 7.2 to include process noise. That is, we consider the aircraft dynamics in
turbulent wind described by the stochastic differential equation (6.24) and prove the origin
of a stochastic error system is noise-to-state stable as defined in Section 2.8.

7.4.1 Stochastic Invariance of the Aircraft Dynamics in Turbulent
Wind

Consider the same affine decomposition of the aerodynamics stated in Assumption 7.1, but
additionally allow this decomposition to include the random modeling error (6.18) as stated
in Assumption 6.1. Under these assumptions, Eqs. (6.24c) and (6.24d) become

dvr =
(︂
vr × ω +RT

IBg +
1

m

(︁
F0 + Fvvr + Fωω

)︁)︂
dt+ σFdWF −RT

IBσwdWw (7.27a)

dω = I−1
(︁
Iω × ω +M0 +Mvvr +Mωω

)︁
dt+ σMdWM (7.27b)

Like the deterministic case, we split the state into an unmeasured part x and a measured
part y so that the SDE (6.24) is written as

dx = f(x,y,u)dt+Gx(y)σdW (7.28a)
dy = h(x,y,u)dt+GyσdW (7.28b)

where (f ,h) is the drift vector field and (Gx,Gy) is the diffusion matrix field, both con-
structed from the right-hand side of Eq. (6.24) using Eq. (6.23). To avoid technical diffi-
culties, we restrict the unmeasured part of the state x to be defined on all of Rn, which is
satisfied for x = (vr,w). Also, note the slight abuse of notation “dy” in Eq. (7.28) where,
although y lives on a smooth manifold, the noise in Eq. (6.24) enters only in the equations
defined on Euclidean space. That is, the technicalities mentioned in Remark 6.1 can be
ignored.

In order to design a symmetry-preserving observer for the aircraft in wind, we must determine
what transformations of the aircraft state, input, and noise leave the SDE (7.28) invariant.
Previously, this concept has only been applied to observer design for ordinary differential
equations. As an extension of the work by Gaeta and Lunini [46], we propose the following
definition of G-invariance for controlled SDEs, which builds off the concepts reviewed in
Chapter 2.

Definition 7.1 (G-invariant SDE). Suppose a Lie group G acts on the SDE

dx = f(x,u)dt+G(x,u)σdW (7.29)
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via the stochastic transformation group

(g,x,u,W ) ∈ G× Rn × U × Rq ↦→ (ϕg(x),ψg(u),ϖg(W )) ∈ Rn × U × Rq

The SDE (7.29) is called G-invariant if

dϕg(x) = f(ϕg(x),ψg(u))dt+G(ϕg(x),ψg(u))dϖg(W ) (7.30)

where dϕg and dϖg are understood in the sense of Itô.

Comparing with Definition 7.1, the condition (2.5) for G-invariance of deterministic systems
may be written as dϕg(x)/dt = f(ϕg(x),ψg(u)), which differs from Definition 7.1 in the
same way that ẋ = f(x,u) differs from dx = f(x,u)dt+G(x,u)σdW .

We aim to find a stochastic transformation group {ϕg,ϱg,ψg,ϖg}g∈G for the SDE (7.28),
where ϕg acts on the unmeasured part of state, ϱg acts on the measured part, ψg acts on
the input, and ϖg acts on the Wiener process W . In fact, only a slight augmentation to
the deterministic transformation groups (7.4.I) and (7.4.B) is required. In particular, we
only need to add the appropriate transformations on the increments dWw, dWM , and dWF .
To simplify the discussion, we will only consider the inertial transformation group, whose
stochastic extension is given as follows.

Proposition 7.2. The stochastic aircraft dynamics represented by the SDE (7.28) are SO(3)-
invariant under the stochastic transformation group

ϕg(x) =

(︃
vr
Rgw

)︃
=:

(︃
ϕvr
g (x)
ϕwg (x)

)︃
, ϱg(y) =

⎛⎝ Rgq
RgRIB
ω

⎞⎠ =:

⎛⎝ ϱqg(y)
ϱRIB
g (y)
ϱωg (y)

⎞⎠
ψg(u) = Rgg, dϖg(σW ) =

⎛⎝RgσwdWw

σMdWM

σFdWF

⎞⎠ =:

⎛⎝dϖw
g (σW )

dϖM
g (σW )

dϖF
g (σW )

⎞⎠ (7.31)

where g = Rg ∈ SO(3).

The proof of Proposition 7.2 is omitted for brevity. It follows the proof of Proposition 7.1,
but uses the Itô differential instead of the tangent map.

7.4.2 Stochastic Invariant Pre-Observer
Definition 3.1 can now be extended to the SDE (7.28). In fact, the general form of the
observer is the same; it is the conditions on the dynamics of x̂ that differ.

Definition 7.2. The dynamical system (3.9) with output (3.10) is a stochastic G-invariant
reduced-order pre-observer for the system (7.28) if the SDE

dx̂ = α(x̂− β(y),y,u)dt+ dβ(y) (7.32)
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is G-invariant and the manifold

Z = {(z,x,y) ∈ Rn × Rn × Y | z = x− β(y)} (7.33)

is positively invariant under the flow of the drift vector field (f ,h).

Notice how this definition contrasts with Definition 3.1. Primarily, the dynamics of the (now
stochastic) state estimate are G-invariant according to Definition 7.1. Also, the zero-error
manifold Z needs to be positively invariant only under the deterministic part of the dynamics
— the drift vector field. One might also call this property weak positive invariance.

For the design of a stochastic G-invariant wind observer, the moving frame γ : Y → G and
the observer map β are the same as the deterministic case. As an extension of Theorem 3.1
for the stochastic aircraft dynamics (6.24), consider the following proposition.

Theorem 7.2. Let

α(z,y,u) = f(z + β(y),y,u)− Lβ(y)|x=z+β(y) (7.34)

Then, the dynamical system
ż = α(z,y,u) (3.9)

with output
x̂ = z + β(y) (3.10)

is a stochastic G-invariant, reduced-order pre-observer for the SDE (7.28).

Proof. First, we recognize that α as defined by Eq. (7.34) is the same as the deterministic
case in Eq. (7.14). This is true because β is linear in the states for which noise enters
the stochastic dynamics (6.24). Therefore, the Hessian in Itô’s rule vanishes. Since the drift
vector field of the SDE (6.24) is exactly the same as the vector field defining the deterministic
dynamics (7.3), the zero-error manifold (7.33) is positively invariant by Theorem 3.1.

The remaining task is to choose the time-varying gain matrix L so that we can make a
probabilistic statement about the convergence of x̂ to x.

7.4.3 Stochastic Invariant Observer
We now aim to choose the gain matrix L so that the stochastic pre-observer in Theorem 7.2
is a stochastic observer. That is, we seek sufficient conditions for which a probabilistic
statement of stability can be made about the zero-error manifold Z. Since the sources of
noise in Eq. (6.24) do not vanish on Z, we will develop conditions under which the origin of
a stochastic invariant error system is noise-to-state stable.
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Consider the same invariant error coordinates η as the deterministic case in Eq. (7.16). The
application of Itô’s lemma to η yields the invariant error SDE

dηvr =
(︁
−S(ω)ηvr +

1
m
Fvηvr −Lqvr (ηvr + ηw)−LωvrI

−1Mvηvr

)︁
dt

+
[︁
RT

IB Lωvr − I
]︁
σdW (7.35a)

dηw =
(︁
−Lqw (ηvr + ηw)−LωwI−1Mvηvr − S(ω)ηw

)︁
dt+

[︁
−RT

IB Lωw 0
]︁
σdW (7.35b)

which we may compactly write as

dη =
(︁
A(t)−LC(t)

)︁
η dt+

(︁
B(t)−LD

)︁
σdW (7.36)

where

A(t) =

[︃
−S(ω(t)) + Fv(t)/m 0

0 −S(ω(t))

]︃
C(t) =

[︃
I I

I−1Mv(t) 0

]︃
B(t) =

[︃
RT

IB(t) 0 −I
−RT

IB(t) 0 0

]︃
D =

[︃
0 0 0
0 −I 0

]︃ (7.37)

Since y is a known signal, the stabilization of the invariant error SDE (7.36) is reduced to
LTV observer design for the fictitious linear input-output SDE

dξ = A(t)ξdt+B(t)σdW
dζ = C(t)ξdt+DσdW

(7.38)

where ζ is the observation process whose derivative is the typical output considered in the
linear filtering problem. The remarkable result here is that the solution to the gain design
problem for the stochastic symmetry-preserving reduced-order wind observer is almost that
of the standard Kalman-Bucy filter. The only barrier is that D has rows of zeros, meaning
some of the outputs are noise-free. Since we are constrained to the closed loop error dy-
namics (7.36) and cannot consider more general formulations (e.g., taking derivatives of the
noise-free output [115]), we consider a blended approach to tuning which does not necessarily
produce the minimum variance estimate, but still will be shown to be noise-to-state stable.
First, notice the structures of B and D imply that the components of dW entering the
dξ and dζ equations are distinct; that is, the “process noise” and “measurement noise” in
Eq. (7.38) are uncorrelated. Accordingly, let

B̄ =

[︃
RT

IB −I
−RT

IB 0

]︃
, D̄ =

[︃
0
−I

]︃
(7.39)

reflect the non-zero input channels of B and D, respectively. To circumvent the rank
deficiency of D̄D̄T, define

R̄ =
[︁
D̄σM Γ

]︁ [︁
D̄σM Γ

]︁T (7.40)
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where Γ ∈ R6×3 is a tuning parameter that ensures R̄ is invertible. The positive definite
matrix R̄ can be thought of as the power spectral density of an augmented measurement
noise vector in Eq. (7.38). For the process noise, we have

Q̄ = diag(σwσT
w,σFσ

T
F ) (7.41)

SinceA(t) andB(t) are bounded, uniform observability of the pair (A(t),C(t)) is a sufficient
condition [4] for the existence of a bounded solution P (t) to the differential Riccati equation

Ṗ (t) = A(t)P (t) + P (t)A(t)T − P (t)C(t)TR̄−1C(t)P (t) + B̄(t)Q̄B̄(t)T (7.42)

Assuming uniform observability (see Remark 7.2), the observer gain matrix is

L(t) = P (t)C(t)TR̄−1 (7.43)

Theorem 7.3. If the pair (A(t),C(t)) is observable, then the SO(3)-invariant pre-
observer (3.9)–(3.10) with α given by Eq. (7.34) and L(t) satisfying Eq. (7.43) is a noise-
to-state stable SO(3)-invariant observer for the aircraft in turbulent wind given by the
SDE (6.24).

Since the invariant error system (7.36) is a linear SDE, proving noise-to-state stability is
straightforward.

Proof. Consider the Lyapunov function

V (η, t) = ηTP−1(t)η (7.44)

where P (t) satisfies Eq. (7.42). Consider an arbitrary time interval T = [t0, T ) and let

k1 = inf
t∈T

λmin(P
−1(t)), k2 = sup

t∈T
λmax(P

−1(t)) (7.45)

By the Rayleigh-Ritz inequality,

k1∥η∥2 ≤ V (η, t) ≤ k2∥η∥2 (7.46)

to satisfy Eq. (2.46). The infinitesimal generator applied to V yields

L V = −ηT
(︂
CT(t)R̄−1C(t) + P−1(t)B̄(t)Q̄B̄T(t)P−1(t)

)︂
η

+
1

2
Tr
(︂
σT(︁B(t)−LD

)︁T
P−1

(︁
B(t)−LD

)︁
σ
)︂

(7.47)

Let

k3 = inf
t∈T

λmin

(︂
CT(t)R̄−1C(t) + P−1(t)B̄(t)Q̄B̄T(t)P−1(t)

)︂
(7.48)

k4 = sup
t∈T

Tr
(︂(︁
B(t)−LD

)︁T
P−1(t)

(︁
B(t)−LD

)︁)︂
(7.49)
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By the definition and sub-multiplicative property of the Frobenius norm, it follows that

L V ≤ −k3∥η∥2 +
1

2
k4∥σ∥2F (7.50)

which satisfies Eq. (2.47). Recalling the positive integer p represents the order of a particular
statistical moment of interest, the comparison functions in Eqs. (2.46)–(2.48) are

α1(a) =

{︄
k1a

2, p = 1

k1a, p = 2
, α2(a) =

{︄
k2a

2, p = 1

k2a, p = 2
, α3(a) =

k2
k3
a, ρ(a) =

1

2
k4a

2 (7.51)

which proves noise-to-state stability of the invariant error system (7.36). Furthermore, since
α1 is convex, the error system is both first and second moment noise-to-state stable.

We can now state the probabilistic guarantees that come from the proof of Theorem 7.3. Be-
cause α3 is linear, the class-KL function µ in Eqs. (2.49) and (2.51) is simply the exponential
decay

µ(a, τ) = a exp
(︃
−1

2

k3
k2
τ

)︃
(7.52)

Therefore, the invariant error system (7.36) is exponentially noise-to-state stable with guar-
antees that

P

{︄
∥η(t)∥ >

√︃
2

ϵ

k2
k1
∥η0∥

√︄
exp

(︃
−1

2

k3
k2
t

)︃
+

√︃
2

ϵ

k2k4
k1k3
∥σ∥F

}︄
≤ ϵ (7.53a)

E {∥η(t)∥} ≤
√︃
2
k2
k1
∥η0∥

√︄
exp

(︃
−1

2

k3
k2
t

)︃
+

√︃
2
k2k4
k1k3
∥σ∥F (7.53b)

P
{︃
∥η(t)∥2 > 2

ϵ

k2
k1
∥η0∥2 exp

(︃
−1

2

k3
k2
t

)︃
+

2

ϵ

k2k4
k1k3
∥σ∥2F

}︃
≤ ϵ (7.54a)

E
{︁
∥η(t)∥2

}︁
≤ 2

k2
k1
∥η0∥2 exp

(︃
−1

2

k3
k2
t

)︃
+ 2

k2k4
k1k3
∥σ∥2F (7.54b)

The probabilistic convergence guarantees in Eqs. (7.53) and (7.54) can be extremely useful.
Equations (7.53a) and (7.54a) may be used to provide confidence intervals on bounds of the
exponential convergence. For example, one can conclude there is a 1% chance that ∥η(t)∥
ever exceeds

10

√︃
2
k2
k1
∥η0∥

√︄
exp

(︃
−1

2

k3
k2
t

)︃
+ 10

√︃
2
k2k4
k1k3
∥σ∥F

From another perspective, one may wish to know bounds on the steady-state statistics of
the invariant error. That is,

E {∥η(∞)∥} ≤
√︃

2
k2k4
k1k3
∥σ∥F and E

{︁
∥η(∞)∥2

}︁
≤ 2

k2k4
k1k3
∥σ∥2F
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Alternative Tuning Approach

Altogether, the noise-to-state stability guarantees in Eqs. (7.53) and (7.54) are a principled
quantification of wind estimation performance in the presence of both modeling error and
turbulence. However, these bounds may be overly conservative, especially in scenarios where
k1 ≪ k2. An alternative approach is to consider Q̄ and R̄ as tuning parameters rather than
noise power spectral densities. In this case, it is beneficial to choose Q̄ and R̄ to optimize the
noise-to-state stability bounds. In contrast to the blended approach described earlier, we call
this the optimal bounds approach to tuning the observer. Examining Eqs. (7.53) and (7.54),
we let

Jinit =
k2
k1
, Jrate =

k2
k3
, and Jss =

k4
k3

(7.55)

which are proportional to the guaranteed initial error, inverse of the convergence rate, and
steady-state error, respectively. This observation motivates choosing the penalty matrices
in the design of the observer gain matrix to minimize the cost function

J = Jinit + κ1Jrate + κ2Jss (7.56)

where κ1 and κ2 are non-negative weighting parameters. To simplify this optimization, let
A0, B0, and C0 be the constant matrices defined by evaluating Eq. (7.37) at some nominal
flight condition. Then, let L0 = P0C

T
0 R̄

−1 where P0 satisfies the algebraic Riccati equation
A0P0 + P0A

T
0 − P0C

T
0 R̄

−1C0P0 + B̄0Q̄B̄
T
0 = 0. Using a constrained optimization solver,

J can be minimized over Q̄ and R̄ while constraining Q̄ and R̄ to be positive definite and
norm bounded (e.g., ∥Q̄∥F ≤ 100 and ∥R̄∥F ≤ 100).

7.5 Demonstration of Stochastic Stability Guarantees
Using the same quadrotor considered in Section 7.3, the stochastic aircraft dynamics (6.24)
and observer were simulated using the Euler-Maruyama scheme outlined in Section 2.7. To
demonstrate the probabilistic performance guarantees, the simulation was conducted with
all assumptions satisfied. For all simulations, the components of σ were considered constant
values of

σw = 0.5 I, σM = diag(2.30, 2.21, 5.83)× 10−2, σF = diag(3.55, 3.55, 1.77)× 10−2

To showcase the nonlinear stability guarantees and global nature of the observer, the same
large-amplitude multisine input excitation as Section 7.3 was injected on top of the feedback
control signal.

7.5.1 Blended Approach to Tuning
First, the blended approach to tuning was considered in which fictitious measurement noise
is assumed so that the reduced-order linear error dynamics coincide with that of a full-order
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Kalman-Bucy filter. The free tuning parameter Γ was chosen as Γ = [I 0]T × 10−3. To
evaluate the conservatism of the noise-to-state stability guarantees, 1000 simulations of the
stochastic aircraft dynamics and observer with initial estimate x̂ = 0 were conducted to
numerically approximate the probability density of ∥η(t)∥. The result of these simulations
is shown in Figure 7.7, where we see exponential convergence to a quasi-stationary1 dis-
tribution within about one second. The computed mean µ(t) = E{∥η(t)∥} and standard

Figure 7.7: Probability density of the error ∥η(t)∥ using the blended tuning approach

deviation σ(t) =
√︁

E{(∥η(t)∥ − µ(t))2} are shown in red. For this tuning, the noise-to-state
stability guarantees held across all simulations with

k1 = 15.6, k2 = 5.9× 104, k3 = 240, and k4 = 1.21× 105 (7.57)

The corresponding bounds on the first and second moments of ∥η(t)∥ are shown in Figure 7.8
along with the moments computed from Monte-Carlo simulations. Clearly, these bounds are
extremely conservative and thus not useful. Regardless, the representative time history in
Figure 7.9 along with the Monte-Carlo results demonstrate the excellent performance of the
observer even though the statistical guarantees are too conservative to support it.

7.5.2 Optimal Bounds Approach to Tuning
Next, we consider the alternative tuning approach in which the aim is to minimize a weighted
sum of the guaranteed initial error, inverse of the convergence rate, and steady-state error.
With κ1 = 10 and κ2 = 1, the cost function J given in Eq. (7.56) was minimized to yield Q̄
and R̄ as follows.

1Since the system (7.36) is time-varying, this distribution is not quite stationary; rather, it is modulated
by the vehicle’s attitude.
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Figure 7.8: First and second moment noise-to-state stability guarantees for the blended
tuning approach
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Figure 7.9: Sample time history of state estimates using the blended tuning approach

Q̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
13.60 0.65 −0.28 22.98 1.76 −0.71
0.65 15.71 0.75 1.90 29.06 0.45
−0.28 0.75 18.86 −0.24 1.27 15.66
22.98 1.90 −0.24 46.92 4.82 −1.51
1.76 29.06 1.27 4.82 63.07 0.68
−0.71 0.45 15.66 −1.51 0.68 91.99

⎤⎥⎥⎥⎥⎥⎥⎦ , R̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
16.79 −2.15 0.02 0.44 3.17 −0.02
−2.15 8.91 −0.18 −1.78 −0.39 0
0.02 −0.18 4.08 0.04 −0.01 0
0.44 −1.78 0.04 1.06 0.08 0
3.17 −0.39 −0.01 0.08 1.25 −0.01
−0.02 0 0 0 −0.01 52.79

⎤⎥⎥⎥⎥⎥⎥⎦
Again, we perform 1000 simulations of the stochastic aircraft dynamics and observer to
numerically approximate the probability density of ∥η(t)∥. These results are shown in Fig-
ure 7.10, where we see exponential convergence to a distribution distinct from Figure 7.7.
Note the difference in scale between Figures 7.7 and 7.10. For this tuning approach, the
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Figure 7.10: Probability density of the error ∥η(t)∥ using the optimal bounds tuning ap-
proach

noise-to-state stability guarantees held across all simulations with

k1 = 0.06, k2 = 0.24, k3 = 0.14, and k4 = 5.08 (7.58)

The guarantees shown in Figure 7.11 are much less conservative than the previous tuning,
but are still not a reflection of the Monte-Carlo results. Further, as seen in Figure 7.12,
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Figure 7.11: First and second moment noise-to-state stability guarantees for the optimal
bounds tuning approach

this tuning approach yields less conservative bounds at the expense of performance. The
convergence of the first and second moments of the estimate error is slower than in Figure 7.7.
Similarly, the computed steady-state mean and standard deviation are roughly twice as large.
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Figure 7.12: Sample time history of state estimates using the optimal bounds tuning ap-
proach

7.6 Fixed-Wing Flight Test Results

7.6.1 Research Aircraft
As a demonstration of robustness and practical utility, the proposed wind observer was
implemented on flight data for the eSPAARO fixed-wing UAV shown in Figure 7.13. The

Figure 7.13: The eSPAARO research aircraft

eSPAARO is a 12 ft. wingspan, 45 lb. small UAS designed and built by Virginia Tech’s
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Nonlinear Systems Laboratory. The eSPAARO is an inverted V-tail design with a pusher
propeller configuration. The aircraft control surfaces comprise two ruddervators and two
ailerons. The eSPAARO is instrumented with a Cubepilot CubeBlue flight computer running
PX4 firmware, along with a HERE4 RTK GNSS system. It is propelled by a 22×12 in.
Advanced Precision Composites (APC) propeller mounted to a 500 W brushless motor. The
propulsion system is electrically powered by a ten-cell lithium-ion battery; it’s avionics and
servos are redundantly powered by a separate three-cell lithium-ion polymer battery. More
information about the general approach to instrumentation, flight test, and data processing
can be found in references [61], [62], [133]. The eSPAARO’s physical properties are listed in
Table 7.2.

Table 7.2: eSPAARO properties

Property Symbol Value Units
Mass m 22.498 kg
Mean aerodynamic chord c 0.5588 m
Wing span b 3.6576 m
Wing planform area S 2.0439 m2

Roll moment of inertia Ixx 8.7698 kg ·m2

Pitch moment of inertia Iyy 9.0390 kg ·m2

Yaw moment of inertia Izz 12.563 kg ·m2

x-z product of inertia Ixz 0.6548 kg ·m2

Other products of inertia Ixy, Iyz ≈ 0 kg ·m2

Two of the vaned air data units described in Section 6.4 were mounted to the eSPAARO’s
wingtips to aid in wind estimate validation. The ADUs were not used as part of the proposed
wind observer; they were only used to validate wind estimates. Each ADU was used to
reconstruct the apparent wind velocity according to Eq. (6.25). The true apparent wind w
was then taken to be the average of the wind velocities reconstructed between the two ADUs.

7.6.2 System Identification
An aero-propulsive model for the eSPAARO was identified from flight data following the ap-
proach detailed by Simmons et al. [135]. Orthogonal phase-optimized multisine inputs [109],
[110], [113] were used to simultaneously excite the aircraft’s propulsion system and control
surfaces to provide informative six degree-of-freedom motion data. Specifically, indepen-
dent excitations were applied to the throttle, left ruddervator, right ruddervator, and linked
ailerons. The frequency content of the control surface excitation was between 0.05 Hz and
1.875 Hz to effectively excite the modes of longitudinal and lateral-directional motion. The
propulsion excitation signal’s frequency content was between 0.050 Hz and 0.675 Hz due to
the lower bandwidth of the propulsion system.
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The aerodynamic force F = [X Y Z]T and moment M = [L M N ]T in the body frame is
non-dimensionalized with

Cx =
X

q̄S
, Cy =

Y

q̄S
, Cz =

Z

q̄S

Cl =
L
q̄Sb

, Cm =
M
q̄Sc

, Cn =
N
q̄Sb

(7.59)

where q̄ is dynamic pressure, S is the wing planform area, b is the wingspan, and c is the
mean chord length. The candidate explanatory variables for the model were angle of attack
α, angle of sideslip β, non-dimensional angular rates

p̆ =
pb

2V
, q̆ =

qc

2V
, r̆ =

rb

2V
(7.60)

control surface deflections δvL, δvR, δa, centered inverse advance ratio

Jc =
ΩD

V
− J0 (7.61)

and non-dimensional angle of attack rate ˘̇α = α̇c/(2V ). Here, δvL and δvR are the left
and right ruddervator deflections, δa is the aileron deflection, Ω is the propeller speed, D
is the propeller diameter, and J0 = 15.7 is the nominal inverse advance ratio. All angular
quantities are expressed in radians.

An effective strategy used to efficiently and effectively develop model structures is a com-
bination of multivariate orthogonal function (MOF) modeling [108], [113] and stepwise re-
gression [113]. First, MOF modeling is executed for several separate flight maneuvers. The
model structures developed from each flight maneuver are compared, and the model terms
appearing in a majority of the maneuvers are retained in the model. As a final step, the
MOF results are reviewed by an analyst using stepwise regression to assess whether to in-
clude or exclude fringe model terms. From flight data collected using the 4-input multisine
excitation signal, it was found that the following model structure accurately predicted the
vehicle’s motion from the training data.

Cx = Cxαα + Cxα2α
2 + CxJc

Jc + CxJ 2
c
J 2
c + Cx0 (7.62a)

Cy = Cyββ + Cyr r̆ + CyδvL
δvL + CyδvR

δvR + Cy0 (7.62b)

Cz = Czαα + Czq q̆ + Czα̇ ˘̇α + Cz0 (7.62c)
Cl = Clββ + Clp p̆+ Clr r̆ + Clδaδa+ Cl0 (7.62d)
Cm = Cmαα + Cmq q̆ + CmδvL

δvL + CmδvR
δvR + Cm0 (7.62e)

Cn = Cnβ
β + Cnp p̆+ Cnr r̆ + Cnδa

δa+ CnδvL
δvL + CnδvR

δvR + Cn0 (7.62f)

Note that even though the inclusion of the non-dimensional angle of attack rate ˘̇α improved
the model fit, it was neglected in the wind observer implementation since it does not fit
Eq. (7.64).
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Following the equation error approach to system identification [113], the dependent variables
Cx, Cy, Cz, Cl, Cm, and Cn were computed from flight data using filtered accelerometer and
gyroscope data as described by Simmons [133] and Simmons et al. [136]. Equating these
measurements to the model structure in Eq. (7.62), least squares regression was used to
find the parameter estimates given in Table A.1, located in Appendix A.4. The model’s
valid domain, given in Table A.2, was defined to be the interval between the minimum and
maximum explanatory values with outliers beyond 1.5 times the interquartile range removed
(as typical of a box and whisker plot).

7.6.3 Practical Implementation
Since the nonlinear aerodynamic model in Eq. (7.62) does not precisely satisfy Assump-
tion 7.1, the time-varying parameters F(·), M(·) must be constructed using the current es-
timate of the air-relative velocity vr — akin to linearizing about the best estimate in an
extended Kalman filter. Using the force model as an example, we often consider smooth,
nonlinear, quasi-steady aerodynamic models F (vr,ω, δ), where δ is the vector of flight con-
trol inputs (e.g., throttle setting and control surface deflections). Performing a Taylor series
expansion about v̂r, we have

F (vr,ω, δ) = F (v̂r,ω, δ) +
∂F

∂vr

⃓⃓⃓⃓
vr=v̂r⏞ ⏟⏟ ⏞

Fv(v̂r,ω,δ)

(vr − v̂r) + H.O.T. (7.63)

Noting that any smooth function f(x) may be written as A(x)x+ b(x), one may write

F (v̂r,ω, δ) = Fω(v̂r,ω, δ)ω + F̄0(v̂r,ω, δ)

Then, letting F0(v̂r,ω, δ) = F̄0(v̂r,ω, δ)− Fv(v̂r,ω, δ)v̂r yields

F (vr,ω, δ) = F0(vr,ω, δ) + Fv(vr,ω, δ)vr + Fω(vr,ω, δ)ω + H.O.T. (7.64)

Assuming the estimate v̂r is sufficiently close to vr, the higher-order terms can be neglected
so that “known” signals F(·) in Assumption 7.1 are obtained by setting

Fv(t) =
∂F (vr,ω(t), δ(t))

∂vr

⃓⃓⃓⃓
vr=v̂r(t)

Fω(t) =
∂F (v̂r(t),ω, δ(t))

∂ω

⃓⃓⃓⃓
ω=ω(t)

F0(t) = F (v̂r(t),ω(t), δ(t))− Fv(t)v̂r − Fω(t)ω

(7.65)

The force model error incurred by assuming vr − v̂r ≈ 0 is captured by the higher-order
terms in Eq. (7.64); it is

δF̂ = F (vr,ω, δ)− F (v̂r,ω, δ) (7.66)
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Furthermore, the quasi-steady force model F (vr,ω, δ) differs from the true force Ftrue by
unmodeled dynamics, parametric error, and wind gradients on the scale of the aircraft. Thus,

∆F = Ftrue − F (v̂r,ω, δ) (7.67)

is the total force modeling error that perturbs the invariant error dynamics (7.36) — not just
δF = Ftrue − F (vr,ω, δ) appearing in Eq. (6.24). The decomposition defined by Eq. (7.65)
and the total modeling error in Eq. (7.67) are similarly defined for the moment M .

Now, the practitioner needs only to determine the power spectral densities Qw = σwσ
T
w,

QM = σMσ
T
M , and QF = σFσ

T
F and select the tuning parameter Γ. For the eSPARRO

UAV described in Section 7.6.1, these parameters were chosen using historical flight data.
To include flight in various directions with respect to the wind, the cloverleaf maneuver
shown in Figure 7.14 was used to infer Qw, QM , and QF .
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Figure 7.14: Cloverleaf maneuver used for tuning

The power spectral density of ẇ may be determined in two different ways. The first approach
involves using some truth source, such as an air data unit, to take a numerical derivative of
the reconstructed wind w. The power spectral density of ẇ may be computed using pwelch
in Matlab. Then, Qw is taken to be the maximum value of this power spectral density over
all frequencies; that is, the colored noise ẇ is bounded by white noise with constant power
spectral density Qw. The second approach, which is used to produce the results in this
chapter, begins by assuming the apparent wind is Brownian motion. Therefore, it should
hold that

cov
(︁
w(t+ τ)−w(t)

)︁
= τQw (7.68)

for any τ > 0. Using the reconstructed wind, Eq. (7.68) can be used to compute Qw for a
variety of lag times τ . The final Qw is then selected using its maximum value over all τ > 0.
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For the aircraft and altitudes considered here, Qw was taken to be the diagonal matrix

Qw = diag(0.96, 0.93, 1.38) (m/s)2

Hz
(7.69)

whose elements were selected from the results shown in Figure 7.15.
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Figure 7.15: Selection of Qw through a Brownian motion assumption

The power spectral densities of the force and moment modeling error signals ∆F and ∆M
may be determined using a variety of methods. Here, we use the estimated aerodynamic
model residual variance σ̂2 obtained through the system identification process for each force
and moment component [113, Ch. 5]. Thus, σ̂2 can be used to construct the power spec-
tral density of the nonlinear model error δF = Ftrue − F (vr,ω, δ), for instance. To accu-
rately characterize the total modeling error ∆F , the additional perturbation δF̂ defined in
Eq. (7.66) must also be quantified. We recognize, however, that the term ∆F̂ is a vanishing
perturbation; that is, δF̂ = 0 when v̂r = vr. Therefore, we choose to neglect δF̂ when
selecting the power spectral density QF (and similarly for QM). For the eSPAARO model
given above,

QF = diag(7.6, 14.1, 108.0) N2

Hz
(7.70)

QM = diag(37.7, 19.9, 11.3) (N ·m)2

Hz
(7.71)

Finally, the tuning parameter Γ was chosen to be Γ = [I 0]T. This value was large enough
to not cause over-amplification of measurement noise but still small enough not hinder the
convergence rate of the observer.

Remark 7.3. While δF̂ is neglected in the above selection of QF due to its vanishing
behavior when v̂r = vr, one could incorporate it to improve performance or strengthen stability
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guarantees. Let ṽr,max denote the maximum expected error in the air-relative velocity estimate
— for instance, constrained to prevent stalling or overspeeding a fixed-wing aircraft. Then,
using Monte-Carlo analysis over the model’s valid domain (e.g., Table A.2), the power spectral
density of δF̂ could be estimated and used to inform a more conservative choice of QF .

7.6.4 Flight Test Experiment and Results
To demonstrate the observer’s large region of attraction, the automated S-turn shown in
Figure 7.16 was performed in moderate wind and turbulence levels for the vehicle’s size.
During the flight test experiment, the prevailing wind averaged 9.5 m/s from 285 degrees
(West-Northwest) with gusts up to 12 m/s. The symmetry-preserving reduced-order wind

Figure 7.16: Automated S-turn trajectory (aircraft wingspan to scale)

observer was implemented on this flight data using both the inertial and body transforma-
tion groups. The initial unmeasured state estimates corresponded to straight-and-level flight
at 20 m/s in zero wind. Specifically, ŵ(0) = 0 and v̂r(0) = [19.98 0 0.66]T. The wind
estimates are shown in Figure 7.17. For these results, the noise-to-state stability guaran-
tees (7.53a) and (7.54a) hold with

k1 = 0.253, k2 = 13.7, k3 = 0.166, and k4 = 51.3 (7.72)

Although these guarantees are less conservative than the quadrotor simulation results in
Section 7.5, they are still quite conservative.

As seen in Figure 7.17, the observer’s performance during the S-turn is similar between
the two transformation groups. To further investigate, the wind observer was implemented
on the cloverleaf maneuver used to determine Qw, QF , and QM . The estimates of north
wind component are shown in Figure 7.18. Here, a key difference between the inertial
and body transformation groups becomes apparent — especially around 46 seconds. The
observer designed using the body transformation group is more robust to the modeling
errors and measurement perturbations that occur in tight turns. The radius of curvature
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Figure 7.17: Comparison of north, east, and down wind velocity estimates in m/s between
the inertial and body transformation groups
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Figure 7.18: Comparison of north wind velocity estimates between the inertial and body
transformation groups

for the turns in the cloverleaf maneuver was much smaller than the S-turn, thus resulting in
aileron deflections and roll rates well beyond the model’s valid domain given in Table A.2. To
quantify the difference between the transformation groups, the root mean square error (7.26)
was computed over the cloverleaf maneuver results. For the inertial transformation group, we
have RMSE = 1.35 m/s, whereas the body transformation group yielded RMSE = 1.14 m/s.

The symmetry-preserving wind observer was also compared to a continuous-discrete extended
Kalman filter (EKF) constituting a baseline full-order filtering approach. The EKF assumed
the same process model (6.24) as the symmetry-preserving observer. Thus, the sources of
process noise are the same between these two approaches. The same measurements were
assumed (position, attitude, and angular velocity), except that discrete-time measurement
noise was considered. The measurement noise covariances for position and attitude were
taken to be the average state estimation error covariance reported by the autopilot’s navi-
gation solution. From the cloverleaf maneuver, we have

Pq = diag (0.027, 0.027, 0.039) m2

PRIB = diag
(︁
1.54× 10−5, 1.54× 10−5, 1.66× 10−4

)︁
where PRIB is the covariance of the attitude estimate error in TR̂IB

SO(3). The angular
velocity measurement noise was characterized by comparing raw to smoothed gyroscope
data. The power spectral density of the gyro noise was computed in this way as

Qgyro = diag
(︁
2.18× 10−4, 1.05× 10−4, 4.01× 10−6

)︁ (rad/s)2

Hz

Thus, the discrete-time measurement noise covariance for the EKF is

R = diag (Pq,PRIB ,Qgyro/∆t) (7.73)

where ∆t is the time between measurements.



128 Chapter 7. Symmetry-Preserving Reduced-Order Wind Observers

For the S-turn shown in Figure 7.16, the wind estimates using the EKF are shown in Fig-
ure 7.19 along with the symmetry-preserving observer synthesized using the inertial trans-
formation group. Here, we see the performance of the EKF is comparable to the nonlinear
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Figure 7.19: Comparison of the symmetry-preserving reduced-order wind observer
(SPROWO) with a continuous-discrete extended Kalman filter (EKF) on the S-turn ma-
neuver

observer with a root mean square error (7.26) of RMSE = 1.27 m/s. The two approaches
differ in the initial transients, where we see faster “convergence” using the EKF. However,
it is important to stress that the EKF’s performance is not guaranteed like it is for the
symmetry-preserving reduced-order observer. One potential way to combine the strengths
of these two methods is use the exogenous Kalman filter (XKF) developed by Johansen and
Fossen [82]. In this approach, the nonlinear dynamics are linearized about the state esti-
mates obtained from the nonlinear observer, which are then used in a Kalman filter. The
benefit here is that state estimation error covariances are obtained in addition to the stability
guarantees enjoyed by the nonlinear observer.



Chapter 8

Passivity-Based Wind Estimation

8.1 Introduction
The primary disadvantage of reduced-order observers is that measurement noise can have
unintended consequences on the state estimate. In contrast, the innovation term y − ŷ
in full-order observers acts as a feedback mechanism that can have the effect of “filtering
out” noise. Nonlinear state estimators such as the extended Kalman filter (EKF) can be
viewed in this way, where the model of the dynamics is used to intelligently filter out process
and measurement noise. An alternative viewpoint is that of feedback stabilization. To
demonstrate, consider the nonlinear system ẋ = f(x) with output y = h(x). For systems
defined on Rn, it suffices to consider full-order state estimators and observers of the form

̇̂x = f(x̂) + v(x̂,y)

where v is called the output injection. From this perspective, the dynamics of the state
estimate error x̃ = x̂− x are “controlled” via output feedback

v = L
(︁
y − h(x̂)

)︁
for some gain matrix L. State estimators such as the EKF fall short from this perspective
insofar that their stability guarantees are only local [90]. This observation motivates the use
of full-order nonlinear observers with global stability guarantees.

One method for designing a global nonlinear observer is feedback passivation; that is, v is
chosen to render the state estimation error dynamics passive. As first formalized by Willems
[153], a dynamical system ẋ = f(x)+g(x)u with output y = h(x) is called dissipative with
respect to the supply rate w(u,y) if there exists a non-negative storage function W (x) such
that

W (x(t))−W (x(0)) ≤
∫︂ t

0

w(u(τ),y(τ)) dτ (8.1)

The system is considered passive if it is dissipative with respect to the supply rate w(u,y) =
uTy. It is strictly passive if there also exists a positive definite function φ such that the
system is dissipative with respect to w(u,y) = uTy − φ. Passive systems exhibit many
desirable properties. For example, pure negative output feedback of a zero-state detectable,
passive system asymptotically stabilizes the origin. This property among others is described
in the seminal work of Byrnes, Isidori, and Willems [29], where the authors also develop

129
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the conditions under which a system can be rendered passive by state feedback. Jiang and
Hill [81] extended these conditions to output feedback passivation, which is the mechanism
used in the passivity-based observer design approach described by Shim [131] and Shim et
al. [132]. This chapter is based on reference [75] and details the design of a passivity-based
wind observer.

The rest of this chapter is organized as follows. Section 8.2 provides an overview of passivity-
based observer theory as presented by Shim et al. [132]. Next, Section 8.3 discusses the
problem setup and the assumptions required for the observer design. Next, Section 8.4
details the first step of the observer design — rendering the state estimation error dynamics
minimum phase. The second step of the observer design is covered in Section 8.5, where the
error dynamics are proven to be strictly passive. Finally, Section 8.6 presents both simulation
and flight test results for the observer, enabling the evaluation of the observer’s performance
even when assumptions are violated.

8.2 Observer Design via Passivation of Error Dynamics
In this section, we review the passivity-based observer design method detailed by Shim et
al. [132]. Suppose the state x ∈ Rn can be split into a measured part x1 ∈ Rp and an
unmeasured part x2 ∈ Rn−p such that x = (x1,x2). For the purpose of observer design,
assume x1 is measured perfectly as y = x1. Note that we do not consider y to be part of the
true state vector like denoted in Chapters 3 and 7, since in implementation, there inevitably
exist measurement disturbances causing y ̸= x1. As will be seen shortly, the closed-loop
properties of passivity-based observers lead to an inherent robustness to this discrepancy.

Consider the nonlinear system

ẋ1 = f1(x1,x2,u) (8.2a)
ẋ2 = f2(x1,x2,u) (8.2b)

where u ∈ U comprises the inputs to the system. The aim is to design the Luenberger-like
observer

̇̂x1 = f1(x̂1, x̂2,u) +L1v(x̂,y,u) (8.3a)
̇̂x2 = f2(x̂1, x̂2,u) +L2v(x̂,y,u) (8.3b)

with nonlinear output injection

v(x̂,y,u) = −k(x̂,y,u)yp + vp (8.4)

The output error yp = ŷ − y will become the passive output corresponding to the passive
input vp, a dummy input, for the observer dynamics. Note that the observer formulation
involves two gains — a constant gain L = [LT

1 LT
2 ]

T and scalar gain function k. For the wind
estimation problem, we will generalize the approach by allowing the scalar gain function, k,
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to be a matrix-valued function, K, and allowing the matrix L2 to depend on measurements
as similarly done by Chen and Woolsey [34] and Venkatraman and van der Schaft [151].

Denoting
f̃(x̃;x;u) := f(x̃+ x,u)− f(x,u) (8.5)

the state estimate error dynamics are

̇̃x1 = f̃1(x̃1, x̃2;x1,x2;u) +L1v(x̂,y,u) (8.6a)
̇̃x2 = f̃2(x̃1, x̃2;x1,x2;u) +L2v(x̂,y,u) (8.6b)

The observer design involves two main steps. First, with yp viewed as the output, a proper
Lyapunov function V ∗(x̃2,x) and a positive definite function ϕ∗ are found that prove the
error system in Eq. (8.6) augmented with the plant dynamics is globally minimum phase
with respect to the set

M = {(x̃,x) ∈ Rn × Rn | x̃ = 0} (8.7)

with
V̇ ∗ ≤ −ϕ∗(∥x̃2∥) (8.8)

This step can be thought of like the first step in integrator backstepping, where one stabilizes
a subsystem using a state variable as an artificial input [86, Ch. 14], ensuring the unmeasured
state estimates asymptotically approach their true values when the measurable states are
perfectly known. Second, non-negative functions ϕ1 and ϕ2 are determined such that⃓⃓⃓⃓
∂V ∗

∂x̃2

[f̃2−L2L
−1
1 f̃1](x̃1,L2L

−1
1 x̃1;x1, x̂2;u)+ x̃1L

−1
1 f̃1(x̃1, x̃2+L2L

−1
1 x̃1;x1, x̂2− x̃2;u)

⃓⃓⃓⃓
≤ ϕ1(x̃1,x1, x̂2,u)∥x̃1∥2 + ϕ2(x̃1,x1, x̂2,u)

√︁
ϕ∗(∥x̃2∥)∥x̃1∥ (8.9)

In this expression, parentheses contain arguments for all functions in square brackets. The
requirement that there exist these bounding functions comes from the sufficient conditions
for output feedback passivation developed by Jiang and Hill [81]. It essentially ensures the
coupling between the output dynamics ( ̇̃x1) and the unmeasurable dynamics ( ̇̃x2) preserves
strict passivity from vp to yp, which is a result of the following.

Theorem 8.1 (Theorem 2 by Shim et al. [132]). Suppose the Lyapunov function V ∗ proves
that the error dynamics augmented with the system dynamics are (globally) minimum phase
with respect to M. Also suppose there exist function ϕ1 and ϕ2 such that Eq. (8.9) holds.
Then, the feedback

v = −k(x̂,y)yp + vp (8.10)

with

k(x̂,y) = ε+ϕ1(x̂1−y,y, x̂2−L2L
−1
1 (x̂1−y))+ϕ2

2(x̂1−y,y, x̂2−L2L
−1
1 (x̂1−y)) (8.11)
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for some ε > 0 renders the augmented system strictly passive from vp to yp with respect to
M with the storage function

W = V ∗(x̃2 −L2L
−1
1 x̃1,x) +

1

2
x̃T
1L

−1
1 x̃1 (8.12)

Upon setting vp = 0,M becomes positively invariant and (globally) asymptotically attractive.

While we do not use this theorem directly, the results in this chapter follow its proof.

8.3 Problem Statement
We now aim to design a passivity based observer for the aircraft in wind. To avoid geometric
complications, the attitude rotation matrix RIB is parameterized by the compass vector
λ = RT

IBe1 and tilt vector ζ = RT
IBe3, as done by Woolsey and Techy [155]. The unit vector

λ ∈ S2 is the North direction expressed in the body frame. Similarly, ζ ∈ S2 is the inertial
downward direction expressed in the body frame. With this parameterization, the attitude
kinematics (2.9) become

λ̇ = λ× ω (8.13a)
ζ̇ = ζ × ω (8.13b)

where the rotation matrix, RIB, may be reconstructed as

RIB(λ, ζ) =
[︁
λ S(ζ)λ ζ

]︁T (8.14)

Like in Section 7.2, we restrict ourselves to the deterministic setting. Therefore, we assume
the wind field is uniform and steady. Similar to Assumption 7.1, we affinely decompose the
aerodynamic force F and moment M for the purpose of observer design.

Assumption 8.1. The aerodynamic force and moment satisfy

F = F0(y,u) + Fvvr + Fωω (8.15)
M =M0(y,u) +Mvvr +Mωω (8.16)

where Fv, Fω, Mvvr, and Mω are constant matrices.

Assumption 8.1 is that the quantities Fv, Fω, Mvvr, and Mω are treated as slowly-varying
parameters. For example, the values of F(·) and M(·) for a fixed-wing aircraft generally
depend on dynamic pressure, 1

2
ρvT

r vr, which we can assume to vary slowly compared to the
observer and aircraft dynamics. In contrast, F0 and M0 are functions of the known input u
and output y. For compactness, we will drop the arguments to F0 and M0. The equations
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of motion used for the passivity based wind observer design are

q̇ = RIBvr +w (8.17a)
λ̇ = λ× ω (8.17b)
ζ̇ = ζ × ω (8.17c)
ḣ = I−1

(︁
Iω × ω +M0 +Mvvr +Mωω

)︁
(8.17d)

v̇r = vr × ω + gζ +
1

m

(︁
F0 + Fvvr + Fωω

)︁
(8.17e)

ẇ = 0 (8.17f)

The state of this system is defined by the vector x = [qT λT ζT ωT vT
r w

T]T.

Like Chapter 7, we assume the aircraft is instrumented with an accelerometer, gyroscope,
magnetometer, and inertial positioning system (i.e. vision-based or GNSS) such that posi-
tion, attitude, and angular velocity measurements can be readily obtained with negligible
noise from a low-level estimation algorithm. In other words, consider Assumption 7.2 to be
true. Therefore, let

y = x1 = [qT λT ζT ωT]T (8.18)

meaning the unmeasured part of the state is x2 = [vT
r w

T]T. Thus, the dynamics (8.17)
are in the form (8.2), where f1 contains the right-hand sides of Eqs. (8.17a)–(8.17d) and f2
contains the right-hand sides of Eqs. (8.17e)–(8.17f).

Remark 8.1. While the outputs y are assumed to be noise-free for the purposes of observer
design, the terms F0 and M0 depend on real-time measurements, which may be imperfect in
practice. Throughout the remainder of this chapter, we will use y to denote the measured
quantities used in the implementation of the observer, whereas x1 refers to the true values
used in the design process.

8.4 Minimum Phase and Relative Degree Sufficient
Conditions

Consider the more general form of Eq. (8.3),

̇̂x1 = f1(x̂1, x̂2,u) +L1v (8.19a)
̇̂x2 = f2(x̂1, x̂2,u) +L2(y)v (8.19b)
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which we use to estimate the state of the aircraft in wind. It follows that the components of
the error dynamics vector field f̃ , appearing in Eq. (8.6), has the components

f̃1q = RIB(λ̃+ λ, ζ̃ + ζ)(ṽr + vr)−RIB(λ, ζ)vr + w̃ (8.20a)
f̃1λ = S(λ̃+ λ)(ω̃ + ω)− S(λ)ω (8.20b)
f̃1ζ = S(ζ̃ + ζ)(ω̃ + ω)− S(ζ)ω (8.20c)
f̃1ω = I−1

(︁
S(Iω̃ + Iω)(ω̃ + ω)− S(Iω)ω +Mvṽr +Mωω̃

)︁
(8.20d)

f̃2vr = S(ṽr + vr)(ω̃ + ω)− S(vr)ω + gζ̃ +
1

m
(Fvṽr + Fωω̃) (8.20e)

f̃2w = 0 (8.20f)

The aim of this section is to design the observer gain matrix L such that the first condition
in Theorem 8.1 holds, where L is partitioned as

L1 = diag
(︁
L1q ,L1λ ,L1ζ ,L1ω

)︁
(8.21a)

L2 =

[︃
L2vr

L2w

]︃
=

[︃
L2v,q L2v,λ L2v,ζ L2v,ω

L2w,q L2w,λ
L2w,ζ

L2w,ω

]︃
(8.21b)

That is, we find conditions on L such that a given candidate Lyapunov function proves the
error dynamics are minimum phase. Considering the output injection term in Eq. (8.10),
the zero dynamics of the augmented system composed of Eqs. (8.17) and (8.20) is analyzed
in view of the input-output pair {vp,yp}. In general, the zero dynamics of the augmented
system with respect to yp exist in some neighborhood Z ⊆ Rn × Rn about x̃ = 0 [29] and
evolve on

Z∗ = {(x̃,x) ∈ Z | x̃1 ≡ 0} (8.22)

As discussed by Shim et al. [132], the zero dynamics can be shown to satisfy

̇̃x2 = f̃2(0, x̃2;x1,x2;u)−L2(y)L
−1
1 f̃1(0, x̃2;x1,x2;u) (8.23a)

ẋ = f(x,u) (8.23b)

Therefore, we must choose L such that x̃2 = 0 is asymptotically stable on Z∗. Here,
we see that the global existence of the zero dynamics only requires L1 to be invertible, a
condition that also implies the error dynamics have vector relative degree {1, · · · , 1} [81].
For convenience, denote

φ̃2(x̃1, x̃2;x1,x2;u) := f̃2(x̃1, x̃2;x1,x2;u)−L2(y)L
−1
1 f̃1(x̃1, x̃2;x1,x2;u) (8.24)

=⇒ φ̃∗
2 := φ̃2(0, x̃2;x1,x2;u) (8.25)
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where φ̃∗
2 is called the zero dynamics vector field. Referring to (8.21), we compute φ̃2vr and

φ̃2w as

φ̃2vr (x̃1, x̃2;x1,x2;u) = S(ṽr + vr)(ω̃ + ω)− S(vr)ω + gζ̃ +
1

m
(Fvṽr + Fωω̃)

−L2v,qL
−1
1q

(︂
RIB(λ̃+ λ, ζ̃ + ζ)(ṽr + vr)−RIB(λ, ζ)vr + w̃

)︂
−L2v,λL

−1
1λ

(︂
S(λ̃+ λ)(ω̃ + ω)− S(λ)ω

)︂
−L2v,ζL

−1
1ζ

(︂
S(ζ̃ + ζ)(ω̃ + ω)− S(ζ)ω

)︂
−L2v,ωL

−1
1ω

(︂
I−1 (S(Iω̃ + Iω)(ω̃ + ω)− S(Iω)ω +Mvṽr +Mωω̃)

)︂
(8.26a)

φ̃2w(x̃1, x̃2;x1,x2;u) = −L2w,qL
−1
1q

(︂
RIB(λ̃+ λ, ζ̃ + ζ)(ṽr + vr)−RIB(λ, ζ)vr + w̃

)︂
−L2w,λ

L−1
1λ

(︂
S(λ̃+ λ)(ω̃ + ω)− S(λ)ω

)︂
−L2w,ζ

L−1
1ζ

(︂
S(ζ̃ + ζ)(ω̃ + ω)− S(ζ)ω

)︂
−L2w,ωL

−1
1ω

(︂
I−1 (S(Iω̃ + Iω)(ω̃ + ω)− S(Iω)ω +Mvṽr +Mωω̃)

)︂
(8.26b)

The zero dynamics are obtained by simply evaluating Eq. (8.26) at yp = x̃1 = 0. They
evolve according to

φ̃∗
2vr

= −S(ω)ṽr +
1

m
Fvṽr −L2v,ωL

−1
1ω I

−1Mvṽr −L2v,qL
−1
1q (RIB(λ, ζ)ṽr + w̃) (8.27a)

φ̃∗
2w = −L2w,qL

−1
1q (RIB(λ, ζ)ṽr + w̃)−L2w,ωL

−1
1ω I

−1Mvṽr (8.27b)

Remark 8.2. The zero dynamics (8.27) are very similar to the invariant error dynam-
ics (7.17.I) for the symmetry-preserving reduced-order wind observer. In fact, the design of
a passivity-based observer also yields a reduced-order observer. A similar result was obtained
by Venkatraman and van der Schaft [151] for a special class of port-Hamiltonian systems.

Consider the zero-error setM defined in Eq. (8.7). We aim to find a proper Lyapunov func-
tion V ∗(x̃2,x) that provesM∗ is positively invariant and globally asymptotically attractive
on Z∗. That is, we seek V ∗ such that

ψ1(∥x̃2∥) ≤ V ∗(x̃2,x) ≤ ψ2(∥x̃2∥) (8.28)

V̇ ∗ =
∂V ∗

∂x̃2

φ̃∗
2 +

∂V ∗

∂x
f ≤ −ϕ∗(∥x̃2∥) (8.29)

where ψ1, ψ2 are class K∞ functions and ϕ∗ is a smooth, positive definite function. Note that
V ∗ does not necessarily depend on x, but allowing it to do so may admit observer designs for
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a wider class of systems [132]. As a consequence of Assumption 8.1, we need only consider
the candidate Lyapunov function

V ∗(x̃2,x) =
1

2
x̃T
2 x̃2 (8.30)

which satisfies Eq. (8.28). It follows that

V̇ ∗ = −ṽT
r S(ω)ṽr + ṽ

T
r
1

m
Fvṽr− ṽT

r L2v,qL
−1
1q w̃− ṽ

T
r L2v,qL

−1
1q RIBṽr− ṽT

r L2v,ωL
−1
1ω I

−1Mvṽr

− w̃TL2w,qL
−1
1q RIBṽr − w̃TL2w,qL

−1
1q w̃ − w̃

TL2w,ωL
−1
1ω I

−1Mvṽr (8.31)

Here we have dropped the argument to RIB for compactness. Henceforth, it is implied that
RIB = RIB(λ, ζ) unless explicitly stated. Notice the term ṽT

r S(ω)ṽr is identically equal
to zero since the quadratic form of a skew-symmetric matrix is zero. We may then write
Eq. (8.31) as

V̇ ∗ = −x̃T
2P x̃2 (8.32)

where

P11 = −
1

m
Fv +L2v,qL

−1
1q RIB +L2v,ωL

−1
1ω I

−1Mv (8.33a)

P12 = L2v,qL
−1
1q (8.33b)

P21 = L2w,qL
−1
1q RIB +L2w,ωL

−1
1ω I

−1Mv (8.33c)
P22 = L2w,qL

−1
1q (8.33d)

Therefore, we must choose the gain matrix L such that[︃
Q11 Q12

QT
12 Q22

]︃
:= Q :=

1

2

(︁
P + P T)︁ ≻ 0 (8.34)

where

Q11 =
1

2

(︂
− 1

m
(Fv + F

T
v ) +L2v,qL

−1
1q RIB +RT

IBL
−T
1q L

T
2v,q

+L2v,ωL
−1
1ω I

−1Mv +M
T
v I

−1L−T
1ω L

T
2v,ω

)︂
Q12 =

1

2

(︂
L2v,qL

−1
1q +RT

IBL
−T
1q L

T
2w,q

+MT
v I

−1L−T
1ω L

T
2w,ω

)︂
Q22 =

1

2

(︂
L2w,qL

−1
1q +L−T

1q L
T
2w,q

)︂
Therefore, choosing L such that Q ≻ 0 is sufficient for proving V̇ ∗ is negative definite. Let

L2v,q = Γv,qR
T
IBL1q (8.35a)

L2v,ω = Γv,ωM
T
v IL1ω (8.35b)

L2w,q = RIBΓw,qR
T
IBL1q (8.35c)

L2w,ω = RIBΓw,ωM
T
v IL1ω (8.35d)
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where the matrix
Γ =

[︃
Γv,q Γv,ω
Γw,q Γw,ω

]︃
(8.36)

is a constant parameter used for tuning. Notice we have chosen L2 to make the design of L1

independent of the tuning of the zero dynamics. The matrix Q reduces to

Q11 = −
1

2m

(︁
Fv + F

T
v

)︁
+

1

2

(︁
Γv,q + ΓT

v,q

)︁
+

1

2

(︁
Γv,ωM

T
vMv +M

T
vMvΓ

T
v,ω

)︁
(8.37a)

Q12 =
1

2

(︁
Γv,q + ΓT

w,q +M
T
vMvΓ

T
w,ω

)︁
RT

IB (8.37b)

Q22 =
1

2
RIB

(︁
Γw,q + ΓT

w,q

)︁
RT

IB (8.37c)

The rotation matrix, RIB, does not influence the definiteness of Q. This can be seen using
the Schur complement lemma, stating that Q ≻ 0 if and only if

Γw,q + ΓT
w,q ≻ 0 (8.38a)

Q11 −Q12Q
−1
22Q

T
12 ≻ 0 (8.38b)

Therefore, we may choose Γ such that[︃
− 1
m
Fv + Γv,q + Γv,ωM

T
vMv Γv,q

Γw,q + Γw,ωM
T
vMv Γw,q

]︃
+

[︃
− 1
m
Fv + Γv,q + Γv,ωM

T
vMv Γv,q

Γw,q + Γw,ωM
T
vMv Γw,q

]︃T

≻ 0 (8.39)

This condition may be stated as the linear matrix inequality (LMI)

ΓA+ATΓT +Q ≻ 0 (8.40)

where
A =

[︃
I I

MT
vMv 0

]︃
and Q =

[︃
− 1
m
(Fv + F

T
v ) 0

0 0

]︃
Since V̇ ∗ = −x̃T

2Qx̃2, we choose to lower bound the smallest eigenvalue of Q, denoted
λmin(Q), by some positive constant γ. This constant lower bounds the convergence rate of the
zero dynamics. Similarly, we can ensure the observer gain is not arbitrarily large by setting
an upper bound, γ, on the largest eigenvalue of Q, denoted λmax(Q). This is important
for ensuring the numerical integration of the observer is well-conditioned. Therefore, we
incorporate the additional convex constraints

λmin(Q̄) ≥ γ (8.41a)
λmax(Q̄) ≤ γ (8.41b)

where Q̄ := Q|RIB=I is a constant, symmetric matrix. Hence, for some given γ and γ, we
have the convex feasibility problem

Find Γ such that

ΓA+ATΓT +Q ≻ 0
Γw,q + ΓT

w,q ≻ 0
λmin(Q̄) ≥ γ
λmax(Q̄) ≤ γ

(8.42)
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It may be desirable to further constrain the set of solutions to (8.42). In some cases, the
norm of Γ can still be quite large despite the addition of the bound γ. Accordingly, an
additional upper bound can be placed on the norm of Γ. This approach may also be used
for the case where one chooses to “gain-schedule” Γ based on the current flight condition.
This can be done in principle as long as Fv, Fω, Mv, and Mω vary sufficiently slowly.

If γ is upper bounded for the aerodynamic model of interest, (8.42) can be optimally solved by
maximizing γ for some given γ greater then the maximal γ. As seen in Eq. (8.37), the upper
bound on the zero dynamics convergence rate then directly depends on the aircraft mass,
Fv, and Mv. In other words, the dissipation rate of relative velocity and wind observation
error is dependent on the aircraft’s physical dissipation due to drag. Practically, this means
there may be an upper limit on the time scale of wind fluctuations that can be accurately
resolved. Conversely, if γ is lower bounded for some given γ less than the minimal γ, then
it may be minimized to ensure Q is well-conditioned.

While we have arrived at Eq. (8.40) assuming perfect knowledge of m, Fv, and Mv, we
may want to prescribe a solution that is more robust to uncertainty or changes in these
parameters. Suppose the matrices A, Q, and Q̄ are polytopic uncertain with

{︁
A, Q, Q̄

}︁
∈ P :=

N∑︂
i=1

αi
{︁
Ai, Qi, Q̄i

}︁
,

N∑︂
i=1

αi = 1 (8.43)

Then, we may choose Γ as a solution to the following problem:

Find Γ such that

ΓAi +AT
i Γ

T +Qi ≻ 0
Γw,q + ΓT

w,q ≻ 0
λmin(Q̄i) ≥ γ
λmax(Q̄i) ≤ γ

for i = 1, · · · , N (8.44)

With Γ chosen such that (8.42) or (8.44) are solved, we see that

V̇ ∗ = −x̃T
2Qx̃2 ≤ −γ∥x̃2∥2 =: −ϕ∗(∥x̃2∥) (8.45)

proving the error system is globally minimum phase with respect to yp = ŷ − y.

8.5 Bounding Functions and Strict Passivity
Having proven that the augmented system is minimum phase, we follow the second step by
Shim et al. [132] and consider the change of coordinates

ξ1 = x̃1 (8.46a)
ξ2 = x̃2 −L2(y)L

−1
1 x̃1 (8.46b)
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Specifically, the components of ξ2 for the aircraft in wind are

ξ2vr = ṽr − Γv,qR
T
IBq̃ − Γv,ωM

T
v Iω̃ (8.47a)

ξ2w = w̃ −RIBΓw,qR
T
IBq̃ −RIBΓw,ωM

T
v Iω̃ (8.47b)

It follows that

ξ̇2 = φ̃2(ξ1, ξ2 +L2L
−1
1 ξ1;x1,x2;u)−

d
dt
(︁
L2(y)L

−1
1

)︁
x̃1 (8.48)

The only difference here from the results by Shim et al. [132] is the second term. We will
see shortly that its effect can be incorporated into our choice of gain function, K. Consider
the storage function

W (ξ,x) = V ∗(ξ2,x) +
1

2
ξT
1L

−1
1 ξ1 (8.49)

It can be shown the time derivative of W satisfies

Ẇ =
∂V ∗

∂x
f(x,u) +

∂V ∗

∂ξ2
φ̃∗

2(ξ2,x,u) +
∂V ∗

∂ξ2
φ̃2(ξ1,L2L

−1
1 ξ1;x1,x2;u)

+ ξT
1L

−1
1 f̃1(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u) +

∂V ∗

∂ξ2

d
dt
(︁
L2(y)L

−1
1

)︁
ξ1 + ξ

T
1 v (8.50)

where the term d
dt

(︁
L2(y)L

−1
1

)︁
for the aircraft in wind is

d
dt
(︁
L2(y)L

−1
1

)︁
=

[︃
−Γv,qS(ω)RT

IB 0 0 0
RIB (S(ω)Γw,q − Γw,qS(ω))R

T
IB 0 0 RIBS(ω)Γw,ωM

T
v I

]︃
(8.51)

Then by Eq. (8.45), we have

Ẇ ≤ −ϕ∗(∥ξ2∥) +
∂V ∗

∂ξ2
φ̃2(ξ1,L2(y)L

−1
1 ξ1;x1, ξ2 + x2;u)

+ ξT
1L

−1
1 f̃1(ξ1, ξ2 +L2(y)L

−1
1 ξ1;x1,x2;u)−

∂V ∗

∂ξ2

d
dt
(︁
L2(y)L

−1
1

)︁
ξ1 + ξ

T
1 v (8.52)

Here we see the feedback v can be chosen to render the augmented dynamics strictly passive.
Specifically, consider the following result.

Proposition 8.1. There exist a symmetric matrix function Ψ : Rp×Rn−p×Rp×U → Rp×p

and a matrix function Λ : Rp × Rn−p × Rp × U → R(n−p)×p such that

∂V ∗

∂ξ2
φ̃2(ξ1,L2(y)L

−1
1 ξ1;x1, ξ2 + x2;u) + ξ

T
1L

−1
1 f̃1(ξ1, ξ2 +L2(y)L

−1
1 ξ1;x1,x2;u)

− ∂V
∗

∂ξ2

d
dt
(︁
L2(y)L

−1
1

)︁
ξ1 ≤

√︁
ϕ∗(∥ξ2∥)∥Λ(ξ1, ξ2+x2,x1,u)ξ1∥+ξT

1Ψ(ξ1, ξ2+x2,x1,u)ξ1

(8.53)
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Proof. The proof of Proposition 8.1 is given in Appendix B.

Using Proposition 8.1, we write Eq. (8.52) as

Ẇ ≤ −ϕ∗(∥ξ2∥) +
√︁
ϕ∗(∥ξ2∥)∥Λ(ξ1, ξ2 + x2,x1,u)ξ1∥+ ξT

1Ψ(ξ1, ξ2 + x2,x1,u)ξ1 + ξ
T
1 v

(8.54)
Consider the feedback law

v = −K(x̂,y)yp + vp (8.55)

where

K(x̂,y,u) = εI+
[︁
Ψ+ΛTΛ

]︁ (︁
x̂1 − y, x̂2 −L2(y)L

−1
1 (x̂1 − y),y,u

)︁
(8.56)

for any ε > 0. Here, parentheses contain arguments for all functions in square brackets.
Substituting this feedback law under the coordinate transformation into Eq. (8.54), we obtain

Ẇ ≤ yT
p vp − ϕ∗(∥ξ2∥) +

√︁
ϕ∗(∥ξ2∥)∥Λ(ξ1, ξ2 + x2,x1,u)ξ1∥

+ ξT
1Ψ(ξ1, ξ2 + x2,x1,u)ξ1 − ξT

1

(︁
εI+

[︁
Ψ+ΛTΛ

]︁
(ξ1, ξ2 + x2,x1,u)

)︁
ξ1 (8.57)

After writing Eq. (8.57) as

Ẇ ≤ yT
p vp −

3

4
ϕ∗(∥ξ2∥)− εξT

1 ξ1

− 1

4
ϕ∗(∥ξ2∥) +

√︁
ϕ∗(∥ξ2∥)∥Λ(ξ1, ξ2 + x2,x1,u)ξ1∥ − ξT

1

[︁
ΛTΛ

]︁
(ξ1, ξ2 + x2,x1,u)ξ1

(8.58)

and noticing

−1

4
ϕ∗(∥ξ2∥) +

√︁
ϕ∗(∥ξ2∥)∥Λξ1∥ − ξT

1Λ
TΛξ1 = −

(︃
1

2

√︁
ϕ∗(∥ξ2∥)− ∥Λξ1∥

)︃2

it can be seen that

Ẇ ≤ yT
p vp −

3

4
ϕ∗(∥ξ2∥)− εξT

1 ξ1 −
(︃
1

2

√︁
ϕ∗(∥ξ2∥)− ∥Λξ1∥

)︃2

(8.59)

Therefore, the storage function

W = V ∗(x̃2 −L2L
−1
1 x̃1,x) +

1

2
x̃T
1L

−1
1 x̃1 (8.60)

proves the feedback law (8.55) renders the augmented system strictly passive from vp to
yp with respect to M. Upon setting vp = 0, M becomes positively invariant and globally
asymptotically attractive [97]. In other words, the origin of the error system (8.6) is asymp-
totically stable. In fact, since L2(y) is bounded, there exist positive constants κ1, κ2, and
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κ3 such that κ1∥x̃∥2 ≤ W ≤ κ2∥x̃∥2 and Ẇ ≤ −κ3∥x̃∥2. Specifically, define the constant
symmetric matrices

G1,2 =

[︃
L−T

1 L̄T
2 L̄2L

−1
1 + (L−1

1 +L−T
1 )/2 L−T

1 L̄T
2

L̄2L
−1
1 I

]︃
(8.61)

G3 =

[︃
3
4
γL−T

1 L̄T
2 L̄2L

−1
1 + εI 3

8
γL−T

1 L̄T
2

3
4
γL̄2L

−1
1

3
4
γI

]︃
(8.62)

where
L̄2 := L2|RIB=I

Then, the origin of the error system (8.6) is proven globally exponentially stable with tra-
jectories satisfying

∥x̃(t)∥ ≤
√︃
κ2
κ1
∥x̃(0)∥e−

1
2

κ3
κ2
t (8.63)

where κ1 = 1
2
λmin(G1,2), κ2 = 1

2
λmax(G1,2), and κ3 = λmin(G3). These results give an explicit

upper bound for the convergence rate of the state estimate error. Note that this upper bound
may be conservative since the contribution of the last term in Eq. (8.59) is neglected.

The matrix L1 is left as a tuning parameter that can be chosen using familiar methods of
observer gain design by linearizing about a nominal flight condition and defining weighted
objectives (similar to the process and measurement noise covariance matrices for a Kalman
filter). Also note the choice of bounding matrix functions Ψ and Λ given in Appendix B hold
for any finite L2v,λ , L2v,ζ , L2w,λ

, L2w,ζ
. However, the observer gain is then also arbitrarily

large. Therefore, it is judicious to choose these gains to make Ψ and Λ as small as possible.
Setting L2v,λ , L2v,ζ , L2w,λ

, and L2w,ζ
to be zero matrices is sufficient for this task. Intuitively,

this is because the attitude innovation does not depend on the air-relative velocity or wind.
Altogether, the injection gain matrix L is

L =

⎡⎢⎢⎢⎢⎢⎢⎣
L1q 0 0 0
0 L1λ 0 0
0 0 L1ζ 0
0 0 0 L1ω

Γv,qR
T
IB(λ, ζ)L1q 0 0 Γv,ωM

T
v IL1ω

RIB(λ, ζ)Γw,qR
T
IB(λ, ζ)L1q 0 0 RIB(λ, ζ)Γw,ωM

T
v IL1ω

⎤⎥⎥⎥⎥⎥⎥⎦ (8.64)

8.6 Fixed-Wing Aircraft Demonstration

8.6.1 Research Aircraft
The proposed observer was implemented both in simulation and flight test of a small fixed-
wing UAS called the My Twin Dream (MTD), shown in Figure 8.1. It is a radio-controlled
foam aircraft with counter-rotating electric motors and 10 in. diameter, 6 in. pitch (10x6)
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propellers. The aircraft was instrumented with a Cubepilot CubeOrange flight computer
running PX4 firmware. The sensors onboard the aircraft include triple-redundant accelerom-
eters and gyroscopes, two magnetometers, a Real-Time Kinematic (RTK) global navigation
satellite system (GNSS) receiver, and a vaned air data unit for validation. The MTD was
chosen for its simple construction, propeller location to accommodate the air data boom,
and endurance of approximately 25 minutes. The MTD’s physical properties are listed in
Table 8.1.

Figure 8.1: My Twin Dream (MTD) research aircraft

Table 8.1: My Twin Dream (MTD) properties

Property Symbol Value Units
Mass m 3.311 kg
Mean aerodynamic chord c̄ 0.254 m
Projected wing span b 1.800 m
Wing planform area S 0.457 m2

Roll moment of inertia Ixx 0.319 kg ·m2

Pitch moment of inertia Iyy 0.267 kg ·m2

Yaw moment of inertia Izz 0.471 kg ·m2

x-z product of inertia Ixz 0.024 kg ·m2

Other products of inertia Ixy, Iyz ≈ 0 kg ·m2

A nonlinear aero-propulsive model for the MTD was identified from flight data using the
methods detailed in references [62], [135], [136]. Flight data was collected for the MTD in
calm conditions using orthogonal phase-optimized multisine inputs [113] and was processed
according to Gresham et al. [62] and Simmons et al. [136]. Next, multivariate orthogonal
function modeling was used to determine the model structure with the minimum predicted
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squared error [108]. Similar to the eSPAARO model in Section 7.6.2, the resulting non-
dimensional force and moment coefficient model is

Cx = Cxαα + Cxq q̆ + Cxα2α
2 + CxJc

Jc + Cx0 (8.65a)
Cy = Cyββ + Cyr r̆ + Cyδaδa+ Cyδrδr (8.65b)
Cz = Czαα + Czq q̆ + Czδeδe+ Cz0 (8.65c)
Cl = Clββ + Clp p̆+ Clδaδa (8.65d)
Cm = Cmαα + Cmq q̆ + Cmδe

δe+ Cmα3α
3 + Cm0 (8.65e)

Cn = Cnβ
β + Cnr r̆ + Cnδa

δa+ Cnδr
δr (8.65f)

Next, maximum likelihood parameter estimates were obtained using the output error method
[113] in Matlab using the System IDentification Programs for AirCraft (SIDPAC) software
toolbox [111]. The final model structure is given in Appendix A.5. The model parameter
estimates are shown in Table A.3 and the valid model domain is given in Table A.4. Fig-
ure A.1 shows state prediction results obtained by integrating the final model with input
data that were used in obtaining the model.

8.6.2 Simulation Results
First, the proposed observer was implemented in simulation with all assumptions satisfied in
order to demonstrate the theoretical convergence guarantees. That is, the model is perfectly
known, there is no measurement noise, and the wind is constant. The nonlinear system (8.17)
with linearized aerodynamics was simulated in a uniform wind field with components WN =
10 m/s, WE = −15 m/s, and WD = −3 m/s using Matlab. The aircraft was given large-
amplitude open loop controls resulting in the trajectory shown in Figure 8.2. The nonlinear

Figure 8.2: Simulated aircraft trajectory in wind

passivity-based observer was implemented on this data. The LMIs in (8.42) were solved
using CVX [58], [60] with the Mosek solver [7]. The lower bound γ was maximized for a
fixed upper bound of γ = 5, resulting in an optimal value of γ = 0.27. The time history of
wind estimate results are shown in Figure 8.3. The storage function, W , for the simulation
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data is shown in Figure 8.4. Here, we see that W is strictly decreasing in time — consistent
with Eq. (8.59).
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ŵN

ŵE
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Figure 8.3: Simulated wind estimates
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Figure 8.4: Storage function time history

8.6.3 Flight Test Results
Next, the proposed observer was implemented on flight test data for the MTD. These data
were collected as part of a flight test campaign at Virginia Tech’s Kentland Experimental
Aerial Systems (KEAS) airfield on September 28th, 2022. The wind conditions were mod-
erately turbulent for the aircraft’s size, varying between 3 and 12 m/s, with a mean wind
speed of 7.5 m/s coming from the northwest.

Data were gathered in a grid pattern for two flights — one at 400 ft and the other at 700 ft
above ground level (AGL). Since we are interested in maneuvering flight, nine maneuvers
were selected in which the aircraft executed a sharp banked turn resulting in a heading
change of 180 degrees.

The robust feasibility problem (8.44) was solved over the valid range of state and input values
for the aerodynamic model (Table A.4). The upper bound γ was fixed at 5, while the lower
bound γ was maximized to yield an optimal value of 0.056. An additional constraint was
placed such that the norm of Γ was less than 20 in order to maintain efficient and accurate
numerical integration of the observer. The injection gain of the measured states, L1, was
found by linearizing the aircraft dynamics about the nominal cruise flight condition, (x0,u0),
for the MTD and solving the algebraic Riccati equation,AP+PAT−PCTR−1

c CP+Qc = 0.
Here, A = ∂f/∂x|x0,u0

and C = [I 0]T. Using historical data collected for the MTD, the
Qc and Rc matrices were selected as typically done for a Kalman-Bucy filter. That is, Qc

was selected as the maximum power spectral density of the difference between the modeled
and measured state derivatives over the frequency range of interest. The matrix Rc was
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chosen to be a time-averaged state estimate error covariance of y = x1 from the autopilot’s
extended Kalman filter. The block-diagonal elements of the resulting gain matrix, PCTR−1

c ,
were checked for invertibility and then selected to be the respective block-diagonal elements
of L1. The initial conditions of the measured states, x̂1(0) were set to their initial measured
values, y(0). The initial condition for the relative velocity, v̂r(0) was set to be the aircraft’s
nominal trim value in calm air, while the initial wind estimate, ŵ was set to zero.

The passivity-based observer was implemented on all nine turn maneuvers with the same
tuning parameters. The root-mean-squared error (RMSE) of the wind components were
computed for each 40 second maneuver, as tabulated in Table 8.2. The typical RMSE value
is less than 1 m/s. The RMSE for the vertical component is typically smaller than for the
horizontal components, due to a fixed-wing aircraft’s inherent sensitivity to vertical velocity
fluctuations.

Table 8.2: Flight test maneuvers

Maneuver Flight Number RMSE(wN) [m/s] RMSE(wE) [m/s] RMSE(wD) [m/s]
1 1 0.97 0.58 0.59
2 1 0.83 0.70 0.68
3 1 0.86 0.76 0.69
4 1 0.74 0.55 0.56
5 1 0.75 0.75 0.56
6 2 1.06 0.68 0.41
7 2 1.11 0.81 0.46
8 2 0.84 0.93 0.70
9 2 1.32 1.04 0.63

As an example, the passivity-based observer results for Maneuver 9 are considered. The
trajectory that the aircraft followed during this maneuver is shown in Figure 8.5. The time

Figure 8.5: Trajectory of maneuver 9

histories of the apparent wind estimates are shown in Figure 8.6 along with the “truth
values” reconstructed according to Eq. (6.25). Examining Figure 8.6, the wind estimates
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Figure 8.6: Wind estimates for maneuver 9

appear to converge within an ultimate bound around the true values. Suppose we consider
the modeling error as a disturbance to the error system, on which we can place some upper
bound. Then since the state estimate error is globally asymptotically stable for the ideal
system, there exists some neighborhood about the origin in which the error system is locally
input-to-state stable with respect to these disturbances [86, Ch. 5]. The norms of the matrix-
valued bounding functions, Ψ and Λ, are also plotted in Figure 8.7. Recall, the function Ψ
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Figure 8.7: Bounding functions for maneuver 9

bounds the nonlinear growth of x̃1, which is typically smaller than that of x̃2 (bounded by
Λ).

The variation in convergence among the set of maneuvers was also analyzed. Point-wise
in time, the sample mean and standard deviations were computed across the set of wind
estimate error trajectories. Time histories for the first one second of these data are shown
in Figure 8.8, where we see consistent convergence towards some ultimate bound about zero
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error.
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Chapter 9

Conclusions and Future Directions

This dissertation has explored the theory and application of nonlinear observers for wind
estimation. Particular emphasis has been placed on expanding operating conditions for which
flight dynamic models and state estimation techniques remain accurate and mathematically
valid. We have shown that carefully designed nonlinear observers informed by large-domain
aerodynamic models can yield strong mathematical guarantees on the convergence of wind
estimates, even in a stochastic setting. As autonomy grows increasingly vital for both small
UAVs and larger commercial or urban air mobility platforms, these techniques provide strong
guarantees that can be incorporated into a wide variety of applications, such as synthetic air
data systems, path planning algorithms, safety monitoring solutions, and numerical weather
models.

9.1 Conclusions and Summary of Contributions
Symmetry-Preserving Reduced-Order Observers

A symmetry-preserving, reduced-order observer was introduced in Chapter 3. Nonlinear
reduced-order observers are beneficial when part of the system’s state is known with negli-
gible error, reducing the dimension of the observer and possibly computational complexity.
The core innovation of this work lies in leveraging symmetries in the system dynamics to
construct the nonlinear dynamics and output of the reduced-order observer. The observer
ensures that the state estimate error system also inherits invariance under a Lie group’s
action, which simplifies both the design process and stability analysis. In cases where the
system’s nonlinearities comprise the Lie group’s action, the nonlinear observer may even
yield linear state estimation error dynamics to enable a multitude of design and optimiza-
tion techniques that improve performance. These benefits were demonstrated in the example
of a rigid-body velocity observer.

Nonlinear Multirotor Flight Dynamic Modeling

Multirotor flight dynamic models for control and estimation have typically been limited
to a small operating domain near a nominal equilibrium state (usually hover). Chapter 4
addresses this limitation by carefully bridging established rotor aerodynamic theory and em-
pirical modeling methods to obtain a quasi-steady, nonlinear model that is both accurate
over a large domain and identifiable from flight data. Additional assumptions led to further

148
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simplified models that can more easily be identified from flight data and used in control
and estimation applications. While these steps demonstrate the general applicability and
utility of our physics-based modeling approach, several assumptions, such as uniform inflow
conditions and steady-flight rotor loads, may limit its applicability to more extreme flight
regimes or motion on fast time scales. To ensure reliable parameter identification, a simula-
tion study was conducted based on wind tunnel data. The modeling results not only reveal
the relative significance of model regressors through a forward selection-like algorithm, but
also statistically inform a two-step procedure for identifying model parameters using all force
and moment data. The model fit and predictive skill of the derived models were validated,
demonstrating the utility of the physics-based model structure. Finally, by examining the
relative contribution of individual terms over a range of forward-flight speeds, we have shown
which effects may or may not be critical for a given application, thereby informing a hierar-
chical approach to model selection that can be used in conjunction with data-driven model
structure determination techniques.

Robust Control for System Identification

Identifying parameters for large-domain flight dynamic models for unstable aircraft is chal-
lenging, particularly because stabilizing controllers can introduce regressor correlation and
suppress dynamics of interest. In Chapter 5, a modeling methodology was presented that
supports data collection for the experimental identification of large-domain nonlinear flight
dynamic models using a robust linear, parameter-varying control law. This methodology
thus constitutes a safe (prescribed bound on the excitation-to-state amplification) and ef-
fective (with sufficient excitation to identify model parameters) approach that has a low
barrier to implementation. It requires only an initial set of locally stabilizing control laws,
such as PID controllers, which are then used to collect flight data to identify a polytopic
LPV model for the aircraft dynamics. For a multirotor, it was shown that this step involves
only eight maneuvers, each corresponding to a body velocity reference condition. The next
step of this process consists of excitation and reference signal design and robust H∞ control
law synthesis. For the multirotor, a 7-axis multisine signal was designed to ensure the body
velocity reference is uncorrelated from the actuator commands. With this control law, one
can conduct the second (and final) phase of data collection to obtain rich data over the entire
flight envelope.

Symmetry-Preserving Reduced-Order Observers for Wind Estimation

Chapters 6–7 applied the reduced-order observer presented in Chapter 3 to wind estimation
for maneuvering aircraft. The rotational symmetries in rigid-body dynamics allowed for ex-
ponential convergence without a small-perturbation assumption on the rigid-body dynamics,
significantly expanding the observer’s domain of guaranteed stability. In practice, this means
the proposed observer can handle scenarios with large changes in wind velocity or aggressive
vehicle maneuvers. The observer’s theoretical guarantees were demonstrated through simu-
lation of a nonlinear quadrotor aircraft model. Observers synthesized using both body-frame



150 Chapter 9. Conclusions and Future Directions

and inertial-frame transformation groups yielded comparable results. Through these simu-
lations, the observer was found to be robust to turbulence, measurement noise, and sampled
position data.

Furthermore, an extension of the observer to the stochastic aircraft dynamics accounts for
turbulence and uncertain aerodynamics in a principled manner. Through this perspective,
the gain selection problem reduced to that of the Kalman-Bucy filter, greatly simplifying the
design process for the practitioner. Noise-to-state stability guarantees provide probabilistic
bounds on the convergence of the invariant error, although Monte-Carlo simulation of the
nonlinear quadrotor model revealed these bounds to be conservative. Nonetheless, these
probabilistic convergence guarantees support the use of the observer in safety-critical appli-
cations. Applying the observers to flight data for a fixed-wing UAV further demonstrated
the observer’s practical utility and robustness. These flight test results showed the observer’s
applicability to general maneuvering flight — a result afforded by the exponential (stochas-
tic) stability guarantees on the invariant error dynamics. In these flight test results, it was
found that the body-frame transformation group yielded more robust wind estimates. Over-
all, this provably stable observer provides strong guarantees that can be incorporated into a
wide variety of applications, such as synthetic air data systems, path planning algorithms,
safety monitoring solutions, and numerical weather models.

Passivity-Based Wind Observer

Finally, in Chapter 8, a global nonlinear passivity-based observer for wind estimation was
presented. Under mild assumptions about the wind field and aircraft aerodynamics, we
obtain rigorous guarantees on the convergence of wind estimates across the entire flight en-
velope. Such strong results help expand the range of flight conditions for which accurate
wind estimates can be made. Through a judicious choice of the output error injection gain
matrix (specifically, the component denoted L2 in the chapter), linear matrix inequality con-
ditions were obtained that not only prove the observer error dynamics are globally minimum
phase, but also provide a constructive design procedure. Explicit formulas were derived for
the bounding functions that define the matrix-valued output error scaling (denoted K in the
chapter), allowing the observer to be implemented on flight data. Implementing the observer
on both simulation and flight data demonstrated its potential to estimate wind with rigorous
guarantees, even in maneuvering flight.

9.2 Future Directions
As advancements in aerospace systems push the boundaries of autonomy, safety must remain
a top priority. Building on the theoretical and practical developments of this dissertation,
future research will center on obtaining probabilistic stability guarantees by integrating non-
linear modeling, control, and estimation methods in the stochastic setting. This work will
allow future aerospace systems, particularly aerial robotics and urban air mobility vehicles,
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to operate freely in complex and uncertain conditions. A primary goal is to extend nonlin-
ear observers to stochastic differential equations, thereby incorporating random disturbances
directly into the observer design. Parallel to these observer-centric efforts, stochastic exten-
sions of geometric and energy-based control using passivity will be pursued. By leveraging
the structure of such systems, the burden of proving stochastic stability for nonlinear systems
can be partially alleviated, simplifying conditions for stabilizing controllers.

A complementary focus area lies in modeling, control, and estimation of atmospheric vehicles
in uncertain environments, particularly where parametric uncertainty, unmodeled dynamics,
and atmospheric turbulence significantly affect the vehicle’s motion. In deriving the quasi-
steady models in Chapter 4, certain assumptions (uniform inflow, quasi-steady rotor loads)
may not hold for severe maneuvers or very fast transient dynamics. Extending the validity
of these models by incorporating (possibly stochastic) unsteady aerodynamics is a natural
next step. Similarly, the stochastic observer design in Chapter 7 demonstrated noise-to-
state stability under an idealized assumption on turbulence and modeling error. Real-world
atmospheric phenomena can be far more complex, especially in urban environments. In-
corporating more accurate turbulence models can refine stability bounds and strengthen
the guarantees of nonlinear observers. Although simulation data for multirotor UAVs and
preliminary flight data for fixed-wing aircraft are presented, there is also a further need
to validate the techniques in this dissertation across a broader range of platforms, such as
eVTOL vehicles or flexible aircraft.

9.3 Final Remarks
Overall, this dissertation highlights the importance of merging rigorous theoretical perspec-
tives with practical modeling and experimental methods to enable provably effective state
estimation over large domains in stochastic environments. As aircraft operating envelopes
continue to expand, the methods introduced in this dissertation provide a clear path to
ensuring both accuracy and robustness in safety-critical applications. Continued advances
in stochastic observer design and flight dynamic modeling will be crucial for shaping the
operation of autonomous vehicles.
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Appendix A

Modeling and System Identification

A.1 Derivation of Model 1
We begin by computing the rigid body force vector (4.22) using the rotor force components in
Eq. (4.15) evaluated at the local rotor velocities, vi, as approximated by Eq. (4.27).

Xr = ρπR2u

Nr∑︂
i=1

(︂
−CHµx

RΩi − CHµ0,µx
ν0 − CH

µ2x
vx − CHµx,µz

(w + pyi − qxi)
)︂

Yr = ρπR2v

Nr∑︂
i=1

(︂
−CHµx

RΩi − CHµ0,µx
ν0 − CH

µ2
x
vx − CHµx,µz

(w + pyi − qxi)
)︂

Zr = ρπR2
Nr∑︂
i=1

(︃
− CT0R

2Ω2
i + CTµ0Rν0Ωi − CTµxRvxΩi

+ CTµzR(w + pyi − qxi)Ωi − CT
µ2x
v2x

)︃
(A.1)

Recall from the virtual actuator definitions in Eqs. (4.28) and (4.30) that δ2t = 1
Nr

∑︁Nr
i=1Ω

2
i ,

δt = 1
Nr

∑︁Nr
i=1Ωi, δa = −

∑︁Nr
i=1 yiΩi, and δe =

∑︁Nr
i=1 xiΩi. Additionally, Assumption 4.4c implies∑︁Nr

i=1 xi =
∑︁Nr

i=1 yi = 0. Thus, Eq. (A.1) reduces to

Xr = ρπR2Nru
(︂
−CHµx

Rδt− CHµ0,µx
ν0 + CH

µ2x
vx − CHµx,µz

w
)︂

Yr = ρπR2Nrv
(︂
−CHµx

Rδt− CHµ0,µx
ν0 + CH

µ2
x
vx − CHµx,µz

w
)︂

Zr = ρπR2
(︂
− CT0R

2Nrδ
2t+ CTµ0RNrν0δt− CTµxRNrvxδt+ CTµzR(Nrwδt−∆νZ)− CT

µ2
x
Nrv

2
x

)︂
Finally, adding the airframe-specific force Fa, we obtain the force components in Model 1.

Recall from Eq. (4.23), the total rotor-based moment about the body frame origin is the sum of the
rotor moments plus the sum of the moments due to the rotor forces. We first write the components
of the moment vector due to rotor aerodynamic moments, given by Eq. (4.19), as

−
Nr∑︂
i=1

σiLr,i = ρπR2
Nr∑︂
i=1

σi

(︂
CRµx

R2Ωiu− CRµ0,µx
Rν0u+ CR

µ2x
Rvxu

− CRµx,µz
Ru(w + pyi − qxi)

)︂
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−
Nr∑︂
i=1

σiMr,i = ρπR2
Nr∑︂
i=1

σi
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CRµx

R2Ωiv − CRµ0,µx
Rν0v + CR

µ2x
Rvxv

− CRµx,µz
Rv(w + pyi − qxi)
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−
Nr∑︂
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σi

(︂
−CQ0R

3Ω2
i −CQµ0
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R2vxΩi−CQµz

R2(w+pyi− qxi)Ωi

+ CQ
µ20

Rν20 + CQ
µ2
x
Rv2x + CQ

µ2z
R(w + pyi − qxi)

2 − CQµ0,µx
Rν0vx

+ CQµ0,µz
Rν0(w + pyi − qxi)− CQµx,µz

Rvx(w + pyi − qxi)
)︂

By Assumption 4.4b,
∑︁Nr

i=1 σi = 0. Additionally, the combination of Assumptions 4.4a, 4.4c, and
4.4d imply

∑︁Nr
i=1 σixi =

∑︁Nr
i=1 σiyi = 0. Therefore, we have

−
Nr∑︂
i=1

σiLr,i = ρπR2
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CRµx

R2u
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σiΩi
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i=1
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R(pyi − qxi)

2
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From the virtual actuator definitions in Eqs. (4.28) and (4.30), δ2r = −

∑︁Nr
i=1 σiΩ

2
i and δr =

−
∑︁Nr

i=1 σiΩi. Thus,

−
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i=1

σiLr,i = ρπR2
(︁
−CRµx

R2uδr
)︁

−
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(︁
−CRµx

R2vδr
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−
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(A.2)

where

∆νN :=

Nr∑︂
i=1

σi(pyi − qxi)Ωi

∆ν2N := −
Nr∑︂
i=1

σi(pyi − qxi)
2
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Next, the contribution of rotor forces to the total aerodynamic moment is

Nr∑︂
i=1

pi × Fr,i =

Nr∑︂
i=1

⎡⎣ yiZr,i + hYr,i
−xiZr,i − hXr,i
xiYr,i − yiXr,i

⎤⎦
where we have made use of Assumption 4.4e that zi = −h. Using the rotor force components from
Eq. (4.15) evaluated at the local rotor velocities, it follows that

Nr∑︂
i=1

(yiZr,i + hYr,i) = ρπR2
Nr∑︂
i=1

(︃
− CT0R

2yiΩ
2
i + CTµ0Rν0yiΩi − CTµx

RvxyiΩi

+ CTµzRyi(w + pyi − qxi)Ωi − CT
µ2x
v2xyi − CHµx

RhΩiv

− CHµ0,µx
hν0v + CH

µ2
x
hvxv − CHµx,µz

hv(w + pyi − qxi)

)︃
Nr∑︂
i=1

(−xiZr,i − hXr,i) = ρπR2
Nr∑︂
i=1

(︃
CT0R

2xiΩ
2
i − CTµ0Rν0xiΩi + CTµxRvxxiΩi

− CTµzRxi(w + pyi − qxi)Ωi + CT
µ2x
v2xxi + CHµx

RhΩiu

+ CHµ0,µx
hν0u− CH

µ2x
hvxu+ CHµx,µz

hu(w + pyi − qxi)

)︃
Nr∑︂
i=1

(xiYr,i − yiXr,i) = ρπR2
Nr∑︂
i=1

(︃
CHµx

R(uyi − vxi)Ωi + CHµ0,µx
ν0(uyi − vxi)

+ CHµx,µz
(uyi − vxi)(w + pyi − qxi) + CH

µ2x
vx(uyi − vxi)

)︃

(A.3)

Recall, Assumption 4.4c implies
∑︁Nr

i=1 xi =
∑︁Nr

i=1 yi = 0. Furthermore, Assumptions 4.4c and 4.4d
together imply

∑︁Nr
i=1 xiyi = 0 and

∑︁Nr
i=1 x

2
i =

∑︁Nr
i=1 y

2
i = 1

2Nrℓ
2. Using these facts and the virtual

actuator definitions, Eq. (A.3) simplifies to
Nr∑︂
i=1

(yiZr,i + hYr,i) = ρπR2

(︃
CT0R

2δ2a− CTµ0Rν0δa+ CTµxRvxδa

− CTµzR
(︂
wδa−∆νL

)︂
− CHµx

RNrhvδt

− CHµ0,µx
Nrhν0v − CHµx,µz

Nrhvw − CH
µ2x
Nrhvxv

)︃
Nr∑︂
i=1

(−xiZr,i − hXr,i) = ρπR2

(︃
CT0R

2δ2e− CTµ0Rν0δe+ CTµxRvxδe

− CTµzR
(︂
wδe−∆νM

)︂
+ CHµx

RNrhuδt

+ CHµ0,µx
Nrhν0u+ CHµx,µz

Nrhuw + CH
µ2
x
Nrhvxu

)︃
Nr∑︂
i=1

(xiYr,i − yiXr,i) = ρπR2

(︃
− CHµx

R(uδa+ vδe) +
1

2
CHµx,µz

Nrℓ
2(up+ vq)

)︃

(A.4)



A.1. Derivation of Model 1 169

where

∆νL :=

Nr∑︂
i=1

yi(pyi − qxi)Ωi

∆νM :=

Nr∑︂
i=1

xi(qxi − pyi)Ωi

Altogether, Eqs. (A.2) and (A.4) are substituted into the total rotor-based aerodynamic moment
given by Eq. (4.23) to obtain

Lr = ρπR2

(︃
− CRµx

R2uδr + CT0R
2δ2a− CTµ0Rν0δa+ CTµxRvxδa

− CTµzR
(︂
wδa−∆νL

)︂
− CHµx

RNrhvδt− CHµ0,µx
Nrhvν0

+ CH
µ2x
Nrhvvx − CHµx,µz

Nrhvw

)︃
Mr = ρπR2

(︃
− CRµx

R2vδr + CT0R
2δ2e− CTµ0Rν0δe+ CTµx

Rvxδe

− CTµzR
(︂
wδe−∆νM

)︂
+ CHµx

RNrhuδt+ CHµ0,µx
Nrhuν0

− CH
µ2x
Nrhuvx + CHµx,µz

Nrhuw

)︃
Nr = ρπR2

(︃
CQ0R

3δ2r + CQµ0
R2ν0δr − CQµx

R2vxδr + CQµz
R2
(︂
wδr −∆νN

)︂
− CQ

µ2z
R∆ν2N − CHµx

R(uδa+ vδe) +
1

2
CHµx,µz

Nrℓ
2(up+ vq)

)︃
The airframe and gyroscopic moments are added to Eq. (A.5) according to Eq. (4.25) to yield the
moment components given in Model 1.

Finally, we derive expressions for ∆νL, ∆νM, ∆νN , and ∆ν2N in terms of virtual actuators and
show how their expressions depend on the class of configurations given in Definition 4.1. It turns
out the structure of Mix under Assumption 4.4 allows us to readily compute its pseudoinverse.
First, notice that Assumption 4.4 implies Mix can be written as

Mix =

⎡⎢⎢⎣
1
Nr

1
Nr

· · · 1
Nr

1
Nr

−ℓ sin θ1 −ℓ sin θ2 · · · −ℓ sin θNr−1 −ℓ sin θNr

ℓ cos θ1 ℓ cos θ2 · · · ℓ cos θNr−1 ℓ cos θNr

−1 +1 · · · −1 +1

⎤⎥⎥⎦
where θi is the angle from the b1 axis of the ith rotor arm. Therefore,

MixMT
ix =

⎡⎢⎢⎣
1
Nr

− ℓ
Nr

∑︁
cos θi ℓ

Nr

∑︁
sin θi 0

− ℓ
Nr

∑︁
cos θi ℓ2

∑︁
cos2 θi − ℓ

2

∑︁
sin(2θi) ℓ

∑︁
(−1)i−1 cos θi

ℓ
Nr

∑︁
sin θi − ℓ

2

∑︁
sin(2θi) ℓ2

∑︁
sin2 θi −ℓ

∑︁
(−1)i−1 sin θi

0 ℓ
∑︁

(−1)i−1 cos θi −ℓ
∑︁

(−1)i−1 sin θi Nr

⎤⎥⎥⎦
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where the sum,
∑︁

, is from i = 1 to Nr. By the symmetry implied by Assumption 4.4,

MixMT
ix = diag

(︃
1

Nr
,
Nr
2
ℓ2,

Nr
2
ℓ2, Nr

)︃
=⇒

(︁
MixMT

ix
)︁−1

= diag
(︃
Nr,

2

Nrℓ2
,

2

Nrℓ2
,
1

Nr

)︃

Finally, the pseudoinverse of Mix is

M†
ix = MT

ix diag
(︃
Nr,

2

Nrℓ2
,

2

Nrℓ2
,
1

Nr

)︃
(A.5)

Consider the configuration-dependent term ∆νL :=
∑︁Nr

i=1 yi(pyi−qxi)Ωi. Using Eq. (A.5), we have

∆νL :=

Nr∑︂
i=1

yi(pyi − qxi)Ωi

=

Nr∑︂
i=1

ℓ sin θi(pℓ sin θi − qℓ cos θi)(δt− δa
2

Nrℓ
sin θi + δe

2

Nrℓ
cos θi −

1

Nr
δr(−1)i−1)

Expanding, we have

∆νL = pℓ2δt
∑︂

sin2 θi − pℓ2
1

Nr
δr
∑︂

(−1)i−1 sin2 θi + q
ℓ2

2

1

Nr
δr
∑︂

(−1)i−1 sin(2θi)

− q
ℓ2

2
δt
∑︂

sin(2θi)− p
ℓ

2
(δa
∑︂

sin3 θi − δe
∑︂

sin2 θi cos θi)

+ q
ℓ

2
(δa
∑︂

sin2 θi cos θi − δe
∑︂

sin θi cos2 θi) (A.6)

By Assumption 4.4, the second and third lines of Eq. (A.6) vanish. Thus, we have

∆νL =
1

2
ℓ2pNrδt− pℓ2

1

Nr
δr
∑︂

(−1)i−1 sin2 θi + q
ℓ2

2

1

Nr
δr
∑︂

(−1)i−1 sin(2θi) (A.7)

The second two terms in Eq. (A.7) are zero for Nr ≥ 6. For Nr = 4, they are
1
2ℓ

2 (p cos(2θ0) + q sin(2θ0)) δr, where θ0 is either zero (+ configuration) or π/Nr (× configuration).
Finally using Definition 4.1,

∆νL =

⎧⎪⎨⎪⎩
1
2ℓ

2p(Nrδt− δr) quadrotor+
1
2ℓ

2(Nrpδt+ qδr) quadrotor×
1
2ℓ

2pNrδt multirotor≥6

The remainder of the configuration-dependent terms are found similarly. □
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A.2 Quadrotor LPV Aerodynamic Model Structure
The non-zero elements of the matrices A(·) and B(·) from Eq. (5.8) (which are also functions of the
unknown parameter vector ϑ) are indicated with a “•” as follows.

A0 =

⎡⎢⎢⎢⎢⎢⎢⎣

• 0 0 0 0 0
0 • 0 0 0 0
0 0 • 0 0 0
0 • 0 • 0 0
• 0 0 0 • 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ Au =

⎡⎢⎢⎢⎢⎢⎢⎣

• 0 • 0 0 0
0 • 0 0 0 0
• 0 • • • 0
• • • • • 0
• • • • • 0
• • • • • 0

⎤⎥⎥⎥⎥⎥⎥⎦

Av =

⎡⎢⎢⎢⎢⎢⎢⎣

• 0 0 0 0 0
0 • • 0 0 0
0 • • • • 0
• • • • • 0
• • • • • 0
• • • • • 0

⎤⎥⎥⎥⎥⎥⎥⎦ Aw =

⎡⎢⎢⎢⎢⎢⎢⎣

• 0 0 0 0 0
0 • 0 0 0 0
0 0 • • • 0
• • • • • 0
• • • • • 0
• • • • • 0

⎤⎥⎥⎥⎥⎥⎥⎦

B0 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
• 0 0 0
0 • 0 0
0 0 • 0
0 0 0 •

⎤⎥⎥⎥⎥⎥⎥⎦ Bu =

⎡⎢⎢⎢⎢⎢⎢⎣

• 0 0 0
0 0 0 0
• • • •
• • • •
• • • •
• • • •

⎤⎥⎥⎥⎥⎥⎥⎦ Bv =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
• 0 0 0
• • • •
• • • •
• • • •
• • • •

⎤⎥⎥⎥⎥⎥⎥⎦ Bw =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
• • • •
• • • •
• • • •
• • • •

⎤⎥⎥⎥⎥⎥⎥⎦
A.3 Equation-Error Gray-Box Identification
Consider the linear, time-invariant state equation

ẋ = Ax+Bu (A.8)

where the elements of A and B depend on both known constants (e.g. gravitational acceler-
ation) and unknown parameters (e.g. aerodynamic coefficients). Let x = [x1 · · · xnx ]

T and
u = [u1 · · · unu ]

T. Define the index sets

IA = {(i, j) | Aij unknown, i, j = 1, · · · , nx} (A.9)
IB = {(i, j) | Bij unknown, i = 1, · · · , nx, j = 1, · · · , nu} (A.10)

and their “complements”

IA = {(i, j) | Aij known, i, j = 1, · · · , nx} (A.11)
IB = {(i, j) | Bij known, i = 1, · · · , nx, j = 1, · · · , nu} (A.12)

Let the row vector of regressors for the ith row of the state equation be

hi =
[︁
xT
j uT

k

]︁
, (i, j) ∈ IA, (i, k) ∈ IB (A.13)
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where for each i, xj and uk are column vectors containing the components of x and u defined by
the index sets IA and IB. Then, let the measurement for the ith row of the state equation be

yi = ẋi −
∑︂
j

Aijxj −
∑︂
k

Bikuk, (i, j) ∈ IA, (i, k) ∈ IB (A.14)

For each row of the state equation, define the column vector of parameters

θ(i) =

[︃
AT
j

BT
k

]︃
, (i, j) ∈ IA, (i, k) ∈ IB (A.15)

where for each i, Aj andBk are constructed from the elements of the ith rows ofA andB according
to the index sets IA and IB, respectively. Note: The preceding derivation and notation is presented
for easy implementation in Matlab.

With these definitions, a sample has the model

yi = hiθ
(i), i = 1, · · · , nx (A.16)

for each i = 1, · · · , nx. Now suppose we take K samples of yi and hi, where the kth sample is
denoted yi(k), x(k), and u(k), etc. Let the measurements be subjected to additive, white, Gaussian
noise such that

zi(k) = yi(k) + wi(k), k = 1, · · · ,K, i = 1, · · · , nx (A.17)

Stacking the K measurements and regressors, we obtain

yi =

⎡⎢⎢⎢⎣
yi(1)
yi(2)

...
yi(K)

⎤⎥⎥⎥⎦ , Hi =

⎡⎢⎢⎢⎣
hi(1)
hi(2)

...
hi(K)

⎤⎥⎥⎥⎦ , and wi =

⎡⎢⎢⎢⎣
wi(1)
wi(2)

...
wi(K)

⎤⎥⎥⎥⎦ (A.18)

Then, the measurement equations are

yi =Hiθ
(i), i = 1, · · · , nx (A.19)

from which one obtains the least square error parameter estimates

θ(i) = (HT
i Hi)

−1HT
i yi, i = 1, · · · , nx (A.20)

A.4 eSPAARO System Identification Results
The Equation Error parameter estimates for the eSPAARO model given in Eq. (7.62) are tabulated
in Table A.1. This model’s valid domain is given in Table A.2.

A.5 MTD System Identification Results
The Output Error parameter estimates for the MTD model given in Eq. (8.65) are tabulated in
Table A.3. This model’s valid domain is given in Table A.4. The predicted outputs for the training
data using this model are shown in Figure A.1.
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Table A.1: eSPAARO parameter estimates

Parameter Estimate Std. Dev.
Cxα 2.16× 10−1 1.44× 10−2

Cxα2 1.94 1.78× 10−1

CxJc
2.10× 10−2 2.02× 10−4

CxJ 2
c

6.07× 10−4 3.57× 10−5

Cx0 5.93× 10−2 3.93× 10−3

Cyβ −3.53× 10−1 1.13× 10−2

Cyr 1.29× 10−1 3.51× 10−2

CyδvL
−7.58× 10−2 6.97× 10−3

CyδvR
8.16× 10−2 7.32× 10−3

Cy0 −2.99× 10−2 9.63× 10−4

Czα −3.43 2.53× 10−1

Czq −1.09× 101 3.11
Czα̇ 1.63× 101 3.21
Cz0 −6.10× 10−1 2.55× 10−2

Clβ 7.71× 10−3 3.60× 10−3

Clp −4.22× 10−1 1.71× 10−2

Clr 1.29× 10−1 1.10× 10−2

Clδa −2.75× 10−1 9.41× 10−3

Cl0 7.99× 10−4 9.09× 10−5

Cmα −5.38× 10−1 4.93× 10−2

Cmq −1.01× 101 7.11× 10−1

CmδvL
−4.41× 10−1 1.55× 10−2

CmδvR
−4.80× 10−1 1.66× 10−2

Cm0 −1.87× 10−3 1.10× 10−3

Cnβ
7.90× 10−2 1.86× 10−3

Cnp −4.05× 10−2 8.81× 10−3

Cnr −5.91× 10−2 5.90× 10−3

Cnδa
1.48× 10−2 4.82× 10−3

CnδvL
3.83× 10−2 1.16× 10−3

CnδvR
−3.59× 10−2 1.20× 10−3

Cn0 −1.82× 10−3 2.69× 10−4
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Table A.2: eSPAARO model domain

Variable Min Median Max Units
V 12.12 20.83 31.87 m/s
α −9.36 −0.25 8.60 deg
β −29.60 −3.83 21.62 deg
p −38.37 −0.12 37.79 deg/s
q −29.64 1.38 32.20 deg/s
r −34.59 −2.15 28.55 deg/s
δvL −16.03 −0.57 15.30 deg
δvR −12.12 0.89 14.63 deg
δa −5.92 0.04 6.45 deg
Ω 190.3 479.2 778.0 rad/s

Table A.3: MTD parameter estimates

Parameter Estimate Standard Deviation
Cxα −3.07× 10−1 4.45× 10−3

Cxq 2.54 4.06× 10−2

Cxα2 3.55 3.73× 10−2

CxJc
9.45× 10−2 5.33× 10−4

Cx0 1.03× 10−2 1.87× 10−4

Cyβ −4.62× 10−1 3.04× 10−3

Cyr 5.37× 10−1 6.86× 10−3

Cyδa 5.95× 10−2 1.02× 10−3

Cyδr −1.54× 10−1 2.15× 10−3

Czα −4.95 2.29× 10−2

Czq −8.80 1.45× 10−1

Czδe 7.90× 10−2 1.47× 10−3

Cz0 1.32× 10−1 1.90× 10−3

Clβ −9.21× 10−3 1.49× 10−4

Clp −3.97× 10−1 3.12× 10−3

Clδa −1.16× 10−1 8.04× 10−4

Cmα −4.27× 10−1 4.08× 10−3

Cmq −4.88 6.11× 10−2

Cmδe
2.66× 10−1 1.69× 10−3

Cmα3 −2.16 4.53× 10−2

Cm0 4.17× 10−2 3.92× 10−4

Cnβ
7.78× 10−2 4.32× 10−4

Cnr −1.61× 10−1 1.63× 10−3

Cnδa
1.61× 10−2 2.57× 10−4

Cnδr
5.51× 10−2 4.72× 10−4
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Table A.4: MTD model domain

Variable Min Mean Max Units
V 13.9 18.7 23.4 m/s
α 1.43 6.08 10.72 deg
β -8.89 2.83 14.54 deg
p -90.0 7.9 105.8 deg/s
q -44.5 9.2 62.9 deg/s
r -67.6 -0.03 67.5 deg/s
δa -16.7 -1.2 14.3 deg
δe -12.2 1.9 16.1 deg
δr -13.0 -0.1 12.9 deg
Ω 196.7 212.6 228.5 rad/s
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Figure A.1: MTD output error model prediction



Appendix B

Passivity-Based Wind Observer
Bounding Functions

Proof of Proposition 8.1.

We start by expanding

∂V ∗

∂x̃2
φ̃2(x̃1,L2(y)L

−1
1 x̃1;x1, x̃2 + x2;u)−

∂V ∗

∂x̃2

d
dt
(︁
L2(y)L

−1
1

)︁
x̃1

+ x̃T
1L

−1
1 f̃1(x̃1, x̃2 +L2(y)L

−1
1 x̃1;x1,x2;u) (B.1)

and replacing x2 with x̂2 − x̃2 to yield

− x̃T
2

d
dt
(︁
L2(y)L

−1
1

)︁
x̃1 + ṽ

T
r φ̃2vr (x̃1,L2L

−1
1 x̃1;x1, x̂2;u) + w̃

Tφ̃2w(x̃1,L2L
−1
1 x̃1;x1, x̂2;u)

+ q̃TL−1
1q
f̃1q(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

+ λ̃TL−1
1λ
f̃1λ(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

+ ζ̃TL−1
1ζ
f̃1ζ (x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

+ ω̃TL−1
1ω
f̃1ω(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u) (B.2)

For compactness, note that R̂IB = RIB(λ̃+ λ, ζ̃ + ζ) and denote RIB = RIB(λ, ζ). Then with L2

given in Eq. (8.35), the components of φ̃2 from Eq. (8.26) are written as

φ̃2vr (x̃1, x̃2;x1,x2;u) = S(vr)ω̃ − S(ω̃ + ω)ṽr + gζ̃ +
1

m
Fvṽr +

1

m
Fωω̃

− Γv,qR
T
IB

(︂
R̂IBṽr +

(︂
R̂IB −RIB

)︂
vr + w̃

)︂
− Γv,ωM

T
v

(︂
S(I(ω̃ + ω))ω̃ − S(ω)Iω̃ +Mvṽr +Mωω̃

)︂
(B.3a)

φ̃2w(x̃1, x̃2;x1,x2;u) = −RIBΓw,qR
T
IB

(︂
R̂IBṽr +

(︂
R̂IB −RIB

)︂
vr + w̃

)︂
−RIBΓw,ωM

T
v

(︂
S(I(ω̃ + ω))ω̃ − S(ω)Iω̃ +Mvṽr +Mωω̃

)︂
(B.3b)

Using

L2L
−1
1 x̃1 =

[︄
L2v,qL

−1
1q
q̃ +L2v,ωL

−1
1ω
ω̃

L2w,qL
−1
1q
q̃ +L2w,ωL

−1
1ω
ω̃

]︄
=

[︃
Γv,qR

T
IBq̃ + Γv,ωM

T
v Iω̃

RIBΓw,qR
T
IBq̃ +RIBΓw,ωM

T
v Iω̃

]︃
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and the expressions for φ̃2 in Eq. (B.3), we compute the necessary terms in Eq. (B.2) as

φ̃2vr (x̃1,L2L
−1
1 x̃1;x1, x̂2;u) =

(︃(︂ 1

m
Fv − S(ω̃ + ω)

)︂
Γv,q − Γv,qR

T
IBR̂IBΓv,q − Γv,qΓw,q

− Γv,ωM
T
vMvΓv,q

)︃
RT

IBq̃ + gζ̃ +

(︃(︂ 1

m
Fv − S(ω̃ + ω)

)︂
Γv,ωM

T
v I

+
1

m
Fω + S(v̂r)− Γv,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I

− Γv,ωM
T
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂)︃
ω̃

− Γv,qR
T
IB

(︂
R̂IB −RIB

)︂
v̂r (B.4a)

φ̃2w(x̃1,L2L
−1
1 x̃1;x1, x̂2;u) = RIB

(︃
− Γw,q

(︂
RT

IBR̂IBΓv,q + Γw,q

)︂
− Γw,ωM

T
vMvΓv,q

)︃
RT

IBq̃

+RIB

(︃
− Γw,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I

− Γw,ωM
T
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂)︃
ω̃

−RIBΓw,qR
T
IB

(︂
R̂IB −RIB

)︂
v̂r (B.4b)

f̃1q(x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) =

(︃
RIBΓw,qR

T
IB + R̂IBΓv,qR

T
IB

)︃
q̃

+

(︃
RIBΓw,ω + R̂IBΓv,ω

)︃
MT

v Iω̃ + w̃

+RIBṽr +
(︂
R̂IB −RIB

)︂
v̂r (B.4c)

f̃1λ(x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) = S(λ̃+ λ)ω̃ − S(ω)λ̃ (B.4d)

f̃1ζ (x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) = S(ζ̃ + ζ)ω̃ − S(ω)ζ̃ (B.4e)

f̃1ω(x̃1, x̃2 +L2L
−1
1 x̃1;x1, x̂2 − x̃2;u) = I

−1MvΓv,qR
T
IBq̃ + I

−1Mvṽr

+ I−1
(︂
S(I(ω̃ + ω))− S(ω)I

+Mω +MvΓv,ωM
T
v I
)︂
ω̃ (B.4f)

These expressions (B.4) are then substituted into Eq. (B.2) along with the expression for
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d
dt(L2(y)L

−1
1 ) from Eq. (8.51) to yield

ṽT
r Γv,qS(ω)R

T
IBq̃ − w̃TRIB (S(ω)Γw,q − Γw,qS(ω))R

T
IBq̃ − w̃TRIBS(ω)Γw,ωM

T
v Iω̃

+ ṽT
r

(︃(︂ 1

m
Fv − S(ω̃ + ω)

)︂
Γv,q − Γv,qR

T
IBR̂IBΓv,q − Γv,qΓw,q − Γv,ωM

T
vMvΓv,q

)︃
RT

IBq̃

+ ṽT
r gζ̃ + ṽ

T
r

(︃(︂ 1

m
Fv − S(ω̃ + ω)

)︂
Γv,ωM

T
v I − Γv,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I

+
1

m
Fω + S(v̂r)− Γv,ωM

T
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂)︃
ω̃

− ṽT
r Γv,qR

T
IB

(︂
R̂IB −RIB

)︂
v̂r + w̃

TRIB

(︃
− Γw,ωM

T
vMvΓv,q

−Γw,q
(︂
RT

IBR̂IBΓv,q + Γw,q

)︂)︃
RT

IBq̃ + w̃
TRIB

(︃
− Γw,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I

−Γw,ωMT
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂)︃
ω̃

− w̃TRIBΓw,qR
T
IB

(︂
R̂IB −RIB

)︂
v̂r + q̃

TL−1
1q

(︃
RIBΓw,qR

T
IB + R̂IBΓv,qR

T
IB

)︃
q̃

+ q̃TL−1
1q

(︃
RIBΓw,ω + R̂IBΓv,ω

)︃
MT

v Iω̃ + q̃TL−1
1q
RIBṽr + q̃

TL−1
1q
w̃ + q̃TL−1

1q

(︂
R̂IB −RIB

)︂
v̂r

+ λ̃TL−1
1λ
S(λ̃+ λ)ω̃ − λ̃TL−1

1λ
S(ω)λ̃+ ζ̃TL−1

1ζ
S(ζ̃ + ζ)ω̃ − ζ̃TL−1

1ζ
S(ω)ζ̃ + ω̃TL−1

1ω
I−1Mvṽr

ω̃TL−1
1ω
I−1MvΓv,qR

T
IBq̃ + ω̃

TL−1
1ω
I−1

(︁
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︁
ω̃ (B.5)

Here we have color-coded terms by those that can be written as x̃T
1 (•)x̃1 and those that can be

written as x̃T
2 (•)x̃1. The terms in violet are not immediately seen to follow either of these two

forms. However, the common term (︂
R̂IB −RIB

)︂
v̂r

may be re-written as

(︂
R̂IB −RIB

)︂
v̂r =

[︁
Mλ(λ̃, ζ̃, v̂r) Mζ(λ̃, ζ̃, v̂r)

]︁ [︃λ̃
ζ̃

]︃

where

MT
λ (ζ̃, ζ, v̂r) =

⎡⎣ûr v̂r(ζ̃3 + ζ3)− ŵr(ζ̃2 + ζ2) 0

v̂r −ûr(ζ̃3 + ζ3) + ŵr(ζ̃1 + ζ1) 0

ŵr ûr(ζ̃2 + ζ2)− v̂r(ζ̃1 + ζ1) 0

⎤⎦ (B.6a)

MT
ζ (λ, v̂r) =

⎡⎣0 −v̂rλ3 + ŵrλ2 ûr
0 ûrλ3 − ŵrλ1 v̂r
0 −ûrλ2 + v̂rλ1 ŵr

⎤⎦ (B.6b)
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Note that these choices of Mλ and Mζ are non-unique. Turning back to Eq. (B.5), we now have

ṽT
r Γv,qS(ω)R

T
IBq̃ − w̃TRIB (S(ω)Γw,q − Γw,qS(ω))R

T
IBq̃ − w̃TRIBS(ω)Γw,ωM

T
v Iω̃

ṽT
r

(︃(︂ 1

m
Fv − S(ω̃ + ω)

)︂
Γv,q − Γv,qR

T
IBR̂IBΓv,q − Γv,qΓw,q − Γv,ωM

T
vMvΓv,q

)︃
RT

IBq̃

+ ṽT
r gζ̃ + ṽ

T
r

(︃(︂ 1

m
Fv − S(ω̃ + ω)

)︂
Γv,ωM

T
v I − Γv,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I

+
1

m
Fω + S(v̂r)− Γv,ωM

T
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂)︃
ω̃

− ṽT
r Γv,qR

T
IBMλ(λ̃, ζ̃, v̂r)λ̃− ṽT

r Γv,qR
T
IBMζ(λ̃, ζ̃, v̂r)ζ̃ + w̃

TRIB

(︃
− Γw,ωM

T
vMvΓv,q

−Γw,q
(︂
RT

IBR̂IBΓv,q + Γw,q

)︂)︃
RT

IBq̃ + w̃
TRIB

(︃
− Γw,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I

−Γw,ωMT
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂)︃
ω̃ − w̃TRIBΓw,qR

T
IBMλ(λ̃, ζ̃, v̂r)λ̃

− w̃TRIBΓw,qR
T
IBMζ(λ̃, ζ̃, v̂r)ζ̃ + q̃

TL−1
1q

(︃
RIBΓw,qR

T
IB + R̂IBΓv,qR

T
IB

)︃
q̃ + q̃TL−1

1q

(︃
RIBΓw,ω

+R̂IBΓv,ω

)︃
MT

v Iω̃ + q̃TL−1
1q
RIBṽr + q̃

TL−1
1q
w̃ + q̃TL−1

1q
Mλ(λ̃, ζ̃, v̂r)λ̃+ q̃TL−1

1q
Mζ(λ̃, ζ̃, v̂r)ζ̃

+ λ̃TL−1
1λ
S(λ̃+ λ)ω̃ − λ̃TL−1

1λ
S(ω)λ̃+ ζ̃TL−1

1ζ
S(ζ̃ + ζ)ω̃ − ζ̃TL−1

1ζ
S(ω)ζ̃ + ω̃TL−1

1ω
I−1Mvṽr

+ ω̃TL−1
1ω
I−1MvΓv,qR

T
IBq̃ + ω̃

TL−1
1ω
I−1

(︁
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︁
ω̃ (B.7)

Let the p× p matrix-valued function A be

A(x̃1,x1, x̂2) =

⎡⎢⎢⎣
Aq,q Aq,λ Aq,ζ Aq,ω

0 Aλ,λ Aλ,ζ Aλ,ω

0 0 Aζ,ζ Aζ,ω

0 0 0 Aω,ω

⎤⎥⎥⎦ (B.8)

where

Aq,q = L
−1
1q

(︃
RIBΓw,qR

T
IB + R̂IBΓv,qR

T
IB

)︃
Aq,λ = L−1

1q
Mλ(λ̃, ζ̃, v̂r), Aq,ζ = L

−1
1q
Mζ(λ̃, ζ̃, v̂r)

Aq,ω = L−1
1q

(︃
RIBΓw,ω + R̂IBΓv,ω

)︃
MT

v I +RIBΓ
T
v,qM

T
v I

−1L−T
1ω

Aλ,λ = −L−1
1λ
S(ω), Aλ,ζ = 0, Aλ,ω = L−1

1λ
S(λ̃+ λ)

Aζ,ζ = −L−1
1ζ
S(ω), Aζ,ω = L−1

1ζ
S(ζ̃ + ζ)

Aω,ω = L−1
1ω
I−1

(︁
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︁

Also, define the (n− p)× p matrix-valued function B as

B(x̃1,x1, x̂2) =

[︃
Bvr,q Bvr,λ Bvr,ζ Bvr,ω

Bw,q Bw,λ Bw,ζ Bw,ω

]︃
(B.9)
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where

Bvr,q =

(︃
Γv,qS(ω) +

(︂ 1

m
Fv − S(ω̃ + ω)− Γv,qR

T
IBR̂IB − Γv,ωM

T
vMv

)︂
Γv,q

− Γv,qΓw,q

)︃
RT

IB +RT
IBL

−T
1q

Bvr,λ = −Γv,qRT
IBMλ(λ̃, ζ̃, v̂r)

Bvr,ζ = gI− Γv,qR
T
IBMζ(λ̃, ζ̃, v̂r)

Bvr,ω =
(︂ 1

m
Fv − S(ω̃ + ω)

)︂
Γv,ωM

T
v I − Γv,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I +
1

m
Fω + S(v̂r)

− Γv,ωM
T
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂
+MT

v I
−1L−T

1ω

Bw,q = RIB

(︃
Γw,qS(ω)− S(ω)Γw,q − Γw,ωM

T
vMvΓv,q − Γw,q

(︂
RT

IBR̂IBΓv,q + Γw,q

)︂)︃
RT

IB +L−T
1q

Bw,λ = −RIBΓw,qR
T
IBMλ(λ̃, ζ̃, v̂r)

Bw,ζ = −RIBΓw,qR
T
IBMζ(λ̃, ζ̃, v̂r)

Bw,ω = RIB

(︃
− S(ω)Γw,ωMT

v I − Γw,q

(︂
RT

IBR̂IBΓv,ω + Γw,ω

)︂
MT

v I

− Γw,ωM
T
v

(︂
S(I(ω̃ + ω))− S(ω)I +Mω +MvΓv,ωM

T
v I
)︂)︃

Therefore, the expression (B.7) may be written as

x̃T
2B(x̃1,x1, x̂2)x̃1 + x̃

T
1A(x̃1,x1, x̂2)x̃1

Finally, let

Λ =

√︃
1

γ
B and Ψ =

1

2

(︁
A+AT)︁ (B.10)

Using a series of sub-multiplicative properties, and the definition of ϕ∗ in Eq. (8.45), we have

x̃T
2B(x̃1,x1, x̂2)x̃1 + x̃

T
1A(x̃1,x1, x̂2)x̃1 ≤

⃓⃓
x̃T
2B(x̃1,x1, x̂2)x̃1

⃓⃓
+ x̃T

1A(x̃1,x1, x̂2)x̃1

=
⃓⃓
x̃T
2

√
γΛ(x̃1,x1, x̂2)x̃1

⃓⃓
+ x̃T

1Ψ(x̃1,x1, x̂2)x̃1

≤ √γ∥x̃2∥∥Λ(x̃1,x1, x̂2)x̃1∥+ x̃T
1Ψ(x̃1,x1, x̂2)x̃1

=
√︁
ϕ∗(x̃2) ∥Λ(x̃1,x1, x̂2)x̃1∥+ x̃T

1Ψ(x̃1,x1, x̂2)x̃1

which proves Proposition 8.1.
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