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Inferring wind velocity from aircraft motion is an enabling technology that can be used for
synthetic air data systems, path planning, safety monitoring, and atmospheric science. This
paper presents a reduced-order nonlinear wind observer applicable to uncertain aircraft models
in turbulent wind. The aircraft dynamics are formulated as a stochastic differential equation
that is invariant under the action of a Lie group. The proposed observer leverages this symmetry
to achieve linear error dynamics that are shown to be noise-to-state stable in probability. A
Monte-Carlo simulation of a nonlinear multirotor aircraft model is conducted to demonstrate
the probabilistic guarantees and evaluate their conservatism.

I. Introduction

Inferring wind velocity from aircraft motion is an enabling technology across a wide range of applications. In
aeronautics, wind estimates can be used in synthetic air data systems [1, 2] and path planning algorithms [3, 4].

Furthermore, with the accuracy of wind estimates quantified [5] and/or their convergence guaranteed [6], wind estimation
algorithms can be incorporated into safety monitoring systems, such as [7] and [8], to replace traditional measurement
techniques. Closely tied to aviation, wind estimates are also vital to weather prediction and atmospheric science [9–12].
These areas of application have become intertwined, especially within the poorly sampled atmospheric boundary layer,
with advances in the Urban/Advanced Air Mobility (UAM/AAM) mission [13, 14]. For example, the development
of wind estimation technologies is important in relaxing margins for flight safety to enable more weather-tolerant
operations [15, 16].

The development of model-based wind estimation algorithms has brought finer temporal resolution and greater
accuracy to wind velocity estimates [6, 17–19]. These indirect approaches feature a low instrumentation barrier as they
do not require specialized sensors, such as an anemometer, to measure wind velocity. Instead, a model of the aircraft
dynamics is used in conjunction with standard navigational sensors (e.g., accelerometer, gyroscope, magnetometer, and
GNSS) to continuously estimate wind velocity at the aircraft’s location.

The accuracy and stability of wind estimation methods are often limited by the assumptions underlying their
approximations. We identify two key challenges to address. First, is the small-perturbation assumption that allows
a linear flight dynamic model to be used with linear state estimators (e.g., the Kalman filter) and observers (e.g., the
H∞ filter). (The distinction between estimators and observers is made clear in the Appendix.) Even approximate
nonlinear filter techniques such as the extended Kalman filter only retain their formal guarantees for small perturbations
about steady motion with sufficiently low noise [20, 21]. For model-based wind estimation, nonlinear approaches that
relax the small perturbation assumption are limited, but there have been some promising developments such as the
nonlinear, passivity-based observer detailed in [6]. Another approach – the invariant extended Kalman filter – aims to
expand the set of trajectories for which local stability is verified [22, 23]. These so-called permanent trajectories are a
generalization of steady motions for which stability is guaranteed.

The second challenge in guaranteeing stability of wind estimation algorithms is how random disturbances are treated.
Atmospheric turbulence is a random process (see [24, Ch. 13] and [25]) that casts the aircraft equations of motion in
a stochastic setting. It is thus important to accurately model its effect on the aircraft dynamics when designing an
observer or estimator. Kalman filter-based wind estimators inherently possess local stochastic stability guarantees [20];
however, the explicit stochastic stability guarantees of wind estimation algorithms are generally unexplored – especially
for nonlinear observers.

To address these challenges and the shortcomings of previous approaches, we present a nonlinear state observer for
aircraft flying in turbulent wind that enjoys stochastic stability guarantees. That is, we are able to make probabilistic
statements about the convergence of state/wind estimates for the nonlinear dynamics – a powerful result that can
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be used in all of the aforementioned applications. This observer is not of the typical Luenberger type, but rather is
formulated using an immersion and invariance approach [26, 27]. The resulting reduced-order observer is symmetry-
preserving [28, 29], and the state estimate error dynamics are linear so that optimal estimation methods may be readily
employed. Finally, since the aircraft is subject to random turbulence and modeling error, results from the theory of
noise-to-state stability [30] for stochastic differential equations are used to obtain probabilistic guarantees that the first
two statistical moments of the state estimate error exponentially converge to a neighborhood of the origin.

This paper is organized as follows. Section II introduces the uncertain aircraft dynamics in turbulence and casts
them as a stochastic differential equation (SDE). In Section III, a notion of SDE invariance under Lie group actions is
introduced – a property the aircraft dynamics are shown to possess. The proposed symmetry-preserving reduced-order
observer is presented in Section IV. Finally, the observer is demonstrated on simulated flight data for a multirotor aircraft
in Section V, followed by concluding remarks in Section VI.

II. Stochastic Aircraft Dynamics in Turbulent Wind

A. Rigid-Body Kinematics on TSE(3)
Consider an aircraft, modeled as a rigid body of mass m. Let the orthonormal vectors {i1, i2, i3} define an

earth-fixed North-East-Down (NED) reference frame, FI, which we take to be inertial over the time and space scales
of vehicle motion. Let the orthonormal vectors {b1, b2, b3} define the body-fixed frame, FB, centered at the aircraft
center of gravity (CG) with b1 out the front of the aircraft, b2 out the right-hand side, and b3 out the bottom completing
the right-handed frame. The position of the body frame with respect to the inertial frame is given by the vector
q = [x y z]T ∈ R3. The attitude of the aircraft is described by the rotation matrix RIB ∈ SO(3) that maps free
vectors from FB to FI. The aircraft’s configuration is described by points (q,RIB) in the special Euclidean group,
SE(3) = R3 ⋊ SO(3), where ⋊ is the semi-direct product which expresses how two elements of the group compose a
new element [31, §9.6]. Let v = [u v w]T and ω = [p q r]T be the translational and rotational velocity of the aircraft
with respect to FI expressed in FB, respectively. The kinematic equations of motion are

q̇ = RIBv (1a)

ṘIB = RIBS(ω) (1b)

where S(·) is the skew-symmetric cross product equivalent matrix satisfying S(a)b = a× b for 3-vectors a and b.
Similarly, S−1(·) gives the vector whose cross product equivalent matrix is (·); that is, S−1(S(a)) = a. Geometrically,
these kinematics are defined on the tangent bundle TSE(3) =

⋃
p∈SE(3) TpSE(3), where TpSE(3) denotes the tangent

space to SE(3) at the point p.

B. Stochastic Aircraft Dynamics in Turbulent Wind
Since the aim is to estimate wind velocity, we now consider aircraft motion in a time-varying wind field,

W : R3 × R → R3, defined in the inertial frame. We will append the apparent wind

w(t) =W (q(t), t) (2)

to the aircraft state, where w is the part of the aircraft’s extended state defined by evaluating the wind fieldW at the
aircraft’s position q at time t. Using the chain rule and assuming the vehicle does not affect the flow field in which it is
immersed, the time derivative of w is

dw

dt
=

∂W

∂t
(q, t) +∇W (q, t)

dq

dt
(3)

While no general expression for the right-hand side of Eq. (3) is obtainable, noise shaping filters such as Dryden or
Von Kármán turbulence models are often used to empirically model ẇ so that the spectral content ofw resembles the
wind experienced by an aircraft. For simplicity of presentation, however, we lump the right-hand side of Eq. (3) into a
Brownian motion model for the purpose of observer design.

Assumption 1. The apparent wind velocity is Brownian motion. Specifically, ẇ = σwẆw, where Ẇw is unit variance,
continuous-time, white noise and σwσ

T
w is the power spectral density of ẇ.
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The aerodynamics of the aircraft depend on the body’s air-relative velocity,

vr = v −RT
IBw (4)

rather than the inertial v. Equation (4) is known as the wind triangle. Note that Eq. (3) represents the wind that would
exist at the aircraft center of mass, if the aircraft were absent. Variations in wind velocity over the length and span of the
aircraft are not captured by the pointwise expression (4), but they can be accounted for, to first order, by computing the
wind gradient at q and t and assuming this gradient remains constant over the aircraft. For the purpose of wind observer
design, however, we consider the following assumption about the rotational motion of the wind about the aircraft.

Assumption 2. Wind gradients on the scale of the aircraft are considered to be an additive random disturbance. In
particular, the air-relative angular velocity, ωr, can be taken to be equal to the body angular velocity, ω, in the aircraft
dynamics by modeling the apparent body-frame wind angular velocity ωw = ω − ωr as a random process.

Critically, the combination of Assumptions 1 and 2 allows us to neglect the effects of wind gradients in the observer
design while not completely ignoring them in the observer stability/convergence guarantees.

Let us denote the aerodynamic force and moment acting on the aircraft expressed in FB as F andM , respectively.
Considering the force model for illustrative purposes, we in general have

F = F(vr,ω, δ;ϑ) + parametric error + unmodeled dynamics + local gradient effects (5)

where F is an aerodynamic model that smoothly depends on its arguments, δ is the vector of known aircraft control
inputs, and ϑ is the vector of (imperfectly) identified model parameters. As seen in Eq. (5), the true force differs from
the modeled force by parametric error, unmodeled dynamics, and local wind gradients (Assumption 2). For a well
hypothesized and identified model, the parametric error is typically minimized and the unmodeled dynamics tend to
resemble white, Gaussian noise [32]. Therefore, we can model the combination of these sources of uncertainty as a
random process with known statistics. By the smoothness of F, we can write

F(vr,ω, δ) = F0(vr,ω, δ) + Fv(vr,ω, δ)vr + Fω(vr,ω, δ)ω (6)

These observations suggest the following assumption.

Assumption 3. The aircraft’s aerodynamic force and moment satisfy

F = F0 + Fvvr + Fωω +∆F (7)
M =M0 +Mvvr +Mωω +∆M (8)

where F(·) and M(·) are known parameters that vary with the aircraft state and control, and ∆F and ∆M are
zero-mean, Gaussian, white noise with known power spectral density.

The condition in Assumption 3 can be obtained by setting the arguments of F(·) andM(·) in Eq. (6) to their best-known
values at the current time and lumping everything else into the assumed zero-mean, Gaussian, white modeling error
terms ∆F and ∆M .

Taking I to be the moment of inertia matrix of the rigid body about the center of mass in FB and letting g be the
gravitational acceleration vector, one obtains the following extended state dynamic model for flight in random wind.

q̇ = RIBvr +w (9a)

ṘIB = RIBS(ω) (9b)
ω̇ = I−1

(
Iω × ω +M0 +Mvvr +Mωω +∆M

)
(9c)

v̇r = vr × ω +RT
IBg +

1

m

(
F0 + Fvvr + Fωω +∆F

)
−RT

IBẇ (9d)

ẇ = σwẆw (9e)

Assumption 4. The aircraft’s position (q), attitude (RIB), and angular velocity (ω) are measured without error.
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Thus, we take y = (q,RIB,ω) ∈ Y = SE(3)× R3 to be the measured part of the state and x = (vr,w) ∈ X = Rn

to be the unmeasured part. Here, the dimension of Y is m = 9 (SE(3) is a 6-dimensional smooth manifold), and the
dimension of X is n = 6. The total state space of the system is the (n+m = 15)-dimensional manifold X × Y . We
use the notation (a, b) as shorthand for [aT bT]T when a and b are column vectors and more generally to denote points
in the appropriate product space in which a and b belong.

The dynamics (9) are more formally viewed as a stochastic differential equation (SDE) defined on a complete
probability space (Ω,F ,P). Here, we may identify Ω with the space of Rq-valued continuous functions W(t) on [0,∞).
For fixed ω ∈ Ω, W(t, ω) is called a sample path of the random process W(t). The sigma algebra F collects all
measurable subsets of Ω to form the measurable space (Ω,F) on which we assign a probability measure P : F → [0, 1]
such that W is a standard Wiener process [33]∗. The increments of the driving Wiener process W = (Ww,WM ,WF )
of the stochastic aircraft dynamics (9) satisfy

dw = σwdWw, I−1∆Mdt = σMdWM ,
1

m
∆Fdt = σFdWF (10)

Using Eq. (10), we may more formally write Eqs. (9c)–(9e) as the SDE

dω = I−1
(
Iω × ω +M0 +Mvvr +Mωω

)
dt+ σMdWM (11a)

dvr =
(
vr × ω +RT

IBg +
1

m

(
F0 + Fvvr + Fωω

))
dt+ σFdWF −RT

IBσwdWw (11b)

dw = σwdWw (11c)

The kinematics on SE(3) are not included in the SDE (11) since they are not Euclidean. However, such a technical
distinction† does not matter since we are not concerned about statistics of (q,RIB) and can always choose local
coordinates for SE(3) so that (through a minor abuse of notation) the stochastic aircraft dynamics (9) are written as

dx = f(x,y,u)dt+Gx(y)σdW (12a)
dy = h(x,y,u)dt+GyσdW (12b)

where (f ,h) is the drift vector field and (Gx,Gy) is the diffusion matrix field, both constructed from the right-hand side
of Eq. (9) using Eq. (10). The matrix σ = diag(σw,σM ,σF ) ∈ R9×9 is defined such that σσT is the infinitesimal
covariance of the Brownian motion σW . In Eq. (12), u is the known “input” to the system. It is not necessarily just
control inputs, but rather a collection of known quantities on which a particular transformation group acts (as will be
detailed in Section III). In our case, it is simply u = g. The formulation of the aircraft dynamics (9) as the SDE (12)
will allow us to eventually make probabilistic statements on the convergence of the estimate of x to its true value.

III. Invariance of the Stochastic Aircraft Dynamics
In order to design a symmetry-preserving observer for the aircraft in wind, we must determine what transformations

of the aircraft state, input, and noise leave the dynamics (9) unchanged – that is, invariant. Previously, this concept has
only been applied to observer design for ordinary differential equations.

A. Mathematical Preliminaries
Consider the following preliminaries on invariant theory for ODEs (Section III.A.1) and Itô calculus (Section III.A.2).

1. G-Invariance of Ordinary Differential Equations [36, 37]
A Lie group G is said to act on a manifold X via the mapping

φ : G×X → X , (g,x) 7→ φg(x) (13)

if (i) the identity element e in G induces the identity transformation φe(x) = x for all x ∈ X , and (ii) the composition
of group actions satisfies φg ◦ φh = φg∗h, where “◦” denotes the composition of mappings and “∗” is group

∗The interested reader is directed to [34] for a concise introduction to SDEs.
†Stochastic dynamics on non-Euclidean manifolds are defined by sections of Itô bundles [35] – not the more conventional tangent bundle.
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multiplication [36, 37]. Note the inverse transformation φ−1
g is given by the action of the inverse group element – i.e.,

φ−1
g = φg−1 . With these properties, the collection {φg}g∈G is called a transformation group.

As explained in [29, 37], a dynamical control system

ẋ = f(x,u) (14)

is called G-invariant with respect to the transformation group {φg,ψg}g∈G if

f(φg(x),ψg(u)) = Tφg(x) · f(x,u) (15)

where Tφg(x) : TxX → Tφg(x)X denotes the tangent map of φg at x and “·” denotes its application to a tangent
vector. Note if X = Rn, then Tφg(x) is simply the Jacobian matrix, ∂φg(x)/∂x.

2. Stochastic Differential Equations and Itô’s Rule [33, 34]
On a complete probability space (Ω,F ,P), consider the SDE

dx = f(t,x)dt+G(t,x)σdW (16)

written in the sense of Itô. That is, Eq. (16) is shorthand for

x(t) = x(0) +

∫ t

0

f(s,x(s))ds+

∫ t

0

G(s,x(s))σdW(s) (17)

where
∫ t

0
f(s,x(s))ds is the standard Lebesgue integral and

∫ t

0
G(s,x(s))σdW(s) is the Itô integral with respect to

the standard Wiener process W . Functions of the random process (17) do not follow the typical chain rule, but instead
obey Itô’s rule/lemma.

Lemma 1 (Itô’s Lemma). Given a random processx satisfying Eq. (17) and a function V (t,x) that is once differentiable
in t and twice differentiable in x, the random process v = V (t,x) satisfies

dv =

(
∂V

∂t
+

∂V

∂x
f +

1

2
Tr

[
σTGT ∂

2V

∂x2
Gσ

])
dt+

∂V

∂x
GσdW (18)

Even though we cannot just “divide by dt” in Eq. (18) to get v̇ (W is differentiable nowhere), we still need a notion
of the rate-of-change of v. This motivates the definition of a linear operator called the infinitesimal generator L of the
random process x(t). For SDEs [38], the infinitesimal generator satisfies

L V =
∂V

∂x
f +

1

2
Tr

[
σTGT ∂

2V

∂x2
Gσ

]
(19)

If L is applied to a vector-valued function, it is computed element-wise. Using L , Itô’s rule (18) may be equivalently
written as

dv =

(
∂V

∂t
+ L V

)
dt+

∂V

∂x
GσdW (20)

Since increments dW of the Wiener process are zero-mean, the expected rate of change of v is ∂V/∂t+ L V – a fact
we will use in the Lyapunov stability analysis presented in Section IV.C.

B. G-Invariance of Stochastic Differential Equations
Similar to [39], we propose the following definition of G-invariance for controlled SDEs.

Definition 1 (G-invariant SDE). Suppose the Lie group G acts on the SDE

dx = f(x,u)dt+G(x,u)σdW (21)

via the transformation group

(g,x,u,W) ∈ G×X × U × Rq 7→ (φg(x),ψg(u),ϖg(W)) ∈ X × U × Rq

The SDE (21) is called G-invariant if

dφg(x) = f(φg(x),ψg(u))dt+G(φg(x),ψg(u))dϖg(W) (22)

where dφg and dϖg are understood in the sense of Itô.
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Comparing with Definition 1, the condition for G-invariance of deterministic systems may be written as dφg(x)/dt =
f(φg(x),ψg(u)) [29], which differs from Definition 1 in the same way that ẋ = f(x,u) differs from dx =
f(x,u)dt+G(x,u)σdW .

Here, we aim to find a transformation group {φg,ϱg,ψg,ϖg}g∈G for the SDE (12), where φg acts on the
unmeasured part of state, ϱg acts on the measured part, ψg acts on the input, and ϖg acts on the Wiener process.
Recall Lie groups are mathematical groups that are also smooth manifolds; that is, they are sets of elements that act
on each other through group multiplication, but also topological spaces that correspond (locally) to Euclidean space.
As described in Section II.A, the configuration of the rigid-body aircraft is a point on such a manifold – the special
Euclidean group SE(3). Therefore, SE(3) is a natural choice of Lie group G for which a transformation group is
defined (like in [22, 23]). However, since position does not explicitly appear on the right-hand side of Eq. 9, considering
G = SO(3) is sufficient for the observer presented in this paper.

As explored in [40] for the deterministic case, there are two transformation groups we may consider. One acts on all
quantities expressed in the body frame, while the other acts on inertial frame quantities. It was found in simulations that
this inertial transformation group yielded slightly better results for the deterministic case. Therefore, we consider the
following as its extension to the stochastic aircraft dynamics.

Proposition 1. The stochastic aircraft dynamics represented by the SDE (12) are SO(3)-invariant under the transfor-
mation group

φg(x) =

(
vr

Rgw

)
=:

(
φvr

g (x)

φw
g (x)

)
, ϱg(y) =

 Rgq

RgRIB

ω

 =:

 ϱqg(y)

ϱRIB
g (y)

ϱωg (y)


ψg(u) = Rgg, dϖg(σW) =

RgσwdWw

σMdWM

σFdWF

 =:

dϖw
g (σW)

dϖM
g (σW)

dϖF
g (σW)


(23)

where g = Rg ∈ SO(3).

The proof of Proposition 1 is omitted for brevity. Its deterministic counterpart may be found in [40]. This transformation
group characterizes the rotational symmetry of the aircraft dynamics. It recognizes the fact that the orientation of the
inertial frame is arbitrary.

IV. Stochastic Symmetry-Preserving Reduced-Order Wind Observer
Now that we have established how the SDE (12) is SO(3)-invariant, the theory developed in [28] for deterministic

systems can be extended to obtain a reduced-order observer that preserves symmetries associated with transformation
group (23).

A. The Moving Frame
To preserve symmetries in the observer dynamics, we make use of a moving frame [36, Ch. 8], which can be used to

find invariant functions of the system’s state. The moving frame is intimately tied to how sets of transformed points
{ϱg(y) ∈ Y | g ∈ G}, called G-orbits, relate to the composition of Lie group actions. For our problem, we only need
to consider the transformation on the measured part of the state, ϱg(y). Therefore, it is sufficient to consider a moving
frame to be a mapping γ : Y → G that has the equivariance property

γ(ϱg(y)) ∗ g = γ(y) (24)

Geometrically, the moving frame may be viewed as the map from the state space to the Lie group element that
transforms points to a chosen cross-section – a submanifold K ⊆ Y that transversely intersects G-orbits on Y . This
interpretation provides a method for constructing a moving frame [29, 36], which we summarize as follows. For an
r-dimensional Lie group G acting freely‡ on the m-dimensional manifold Y , let ϱinvg be the part of ϱg that maps points
y ∈ Y to an r-dimensional submanifold of Y such that ϱinvg is invertible with respect to g in a neighborhood of the
identity element e ∈ G. Then, one can select a constant k in the image of ϱinvg that defines the unique point at which the

‡The Lie group G is said to act freely on Y if ϱg(y) = y implies g is the identity element, e.
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G-orbit of a generic point y intersects the (m− r)-dimensional cross-section K. In other words, the moving frame is
obtained by solving the normalization equation

ϱinvh (y) = k (25)

for h ∈ G. The local solution h = γ(y) defines the moving frame, as depicted in Figure 1.

y

ϱg(y)

γ(y)

γ(ϱg(y))

ϱinv
γ(y)(y) = k ϱγ(y)(y)

Y

G

K

G-orbit of y

ϱg

ϱγ

γ

(·) ∗ g

Fig. 1 Equivariance of the moving frame γ and its construction via the cross-section K.

Since the attitude state space of the system is G itself, the moving frame γ : Y → G is naturally defined by the
element of G = SO(3) whose action on the rotational configuration yields the identity element, e = I. Therefore, the
normalization equation reads

RhRIB = I (26)

which implies
h = γ(y) = RT

IB (27)

is the group element that defines a moving frame with the equivariance property (24). The moving frame will be used to
construct an invariant mapping from the measured states to estimates of the unmeasured states, which is then used to
define the form of the symmetry-preserving reduced-order observer (Section IV.B) and obtain sufficient conditions for
its stability (Section IV.C).

B. Stochastic G-Invariant Pre-Observer
With moving frames identified, we can construct a symmetry-preserving reduced-order pre-observer, defined as

follows.

Definition 2 (Pre-Observer). The dynamical system

ż = α(z,y,u) (28)

with output
x̂ = z + β(y) (29)

for some smooth map β : Y → X is a stochastic G-invariant reduced-order pre-observer for the system (12) if the SDE

dx̂ = α(x̂− β(y),y,u)dt+ dβ(y) (30)

is G-invariant and the manifold

Z = {(z,x,y) ∈ X × X × Y | z = x− β(y)} (31)

is positively invariant under the flow of the drift vector field (f ,h).
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The key to constructing the pre-observer (28) is the choice of β, which we call the observer map. Inspired by Lemma 1
in [28], let

β(y) = φγ(y)−1

(
ℓ
(
ϱγ(y)(y)

))
(32)

where ℓ : Y → X is a smooth map. As illustrated in Figure 2, this choice of β is special in that it commutes with the
transformation group. That is,

φg(β(y)) = β(ϱg(y)) (33)

y
ϱg(y)

β(y)

φg(β(y)) = β(ϱg(y))

Y

X

β

β

ϱg

φg

Fig. 2 Commutative relationship between β and the transformation group.

Inspecting the choice of β in Eq. (32), we notice that ϱRIB

γ(y)(y) = I. Therefore, we need only consider
ℓ : Y \ SO(3) → X . Let

ℓ(y) =

[
Lq

vr Lω
vr

Lq
w Lω

w

]
︸ ︷︷ ︸

L

[
q

ω

]
(34)

where L is the observer gain matrix which we allow to vary with time. With this choice of ℓ, Eq. (32) becomes

β(y) =

[
Lq

vrR
T
IBq +L

ω
vrω

RIBL
q
wR

T
IBq +RIBL

ω
wω

]
(35)

As an extension of Theorem 1 in [28], consider the following proposition given without proof.

Proposition 2 (Pre-Observer). Let the vector field α(·,y,u) : Rn → TRn be defined by

α(z,y,u) = f(z + β(y),y,u)− Lβ(y)|x=z+β(y) (36)

Then, the dynamical system (28) with output (29) is a stochastic G-invariant, reduced-order pre-observer.

The components of α as defined by Eq. (36) are

αvr(z,y,u) = v̂r × ω +RT
IBg +

1

m
(F0 + Fvv̂r + Fωω)−Lq

vrR
T
IB (RIBv̂r + ŵ)

−Lω
vrI

−1 (Iω × ω +M0 +Mvv̂r +Mωω) +L
q
vrS(ω)R

T
IBq − L̇q

vrR
T
IBq − L̇ω

vr
ω (37a)
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αw(z,y,u) = −RIBL
q
wR

T
IB (RIBv̂r + ŵ)−RIBL

ω
wI

−1 (Iω × ω +M0 +Mvv̂r +Mωω)

−RIBS(ω)L
ω
wω −RIB (S(ω)Lq

w −Lq
wS(ω))R

T
IBq −RIBL̇

q
wR

T
IBq −RIBL̇

ω
wω (37b)

where
v̂r = zvr +L

q
vrR

T
IBq +L

ω
vrω

ŵ = zw +RIBL
q
wR

T
IBq +RIBL

ω
wω

(38)

Remark 1. The expression for α in Eq. (37) is the same as the deterministic observer in [40]. This is because β is
linear in the states for which noise enters the stochastic dynamics (9). Therefore, the Hessian in Itô’s rule vanishes.

The remaining task is to choose the time-varying gain matrix L so that we can make a probabilistic statement about the
convergence of x̂ to x.

C. Stochastically Stable G-Invariant Observer
We now aim to choose the gain matrix L such that the stochastic pre-observer given by Eqs. (28) and (29) is a

stochastic observer. That is, we seek sufficient conditions for which a probabilistic statement of stability can be made
about the zero-error manifold Z . Since the sources of noise in Eq. (9) do not vanish on Z , we must consider notions of
stochastic stability for systems with non-vanishing noise.

1. Noise-to-State Stability
The SDE (16) with initial condition x(0, ω) = x0 (for almost all ω ∈ Ω) is noise-to-state stable (NSS) if for any

ϵ ∈ (0, 1] there exist a class-K function§ α and a class-KL function β such that

P {∥x(t)∥p > β(∥x0∥, t) + α(∥σ∥)} ≤ ϵ (39)

for some integer p > 0. The system is pth moment noise-to-state stable if there exist a class-K function α and a class-KL
function β such that

E {∥x(t)∥p} ≤ β(∥x0∥, t) + α(∥σ∥) (40)
where E{X(t, ω)} =

∫
Ω
X(t, ω)dP(ω) is the expected value of a random process X .

Sufficient conditions for NSS are given in [30], which we restate as follows.

Lemma 2 (Corollary 3.9 in [30]). If there exist an integer p > 0, a C2-continuous Lyapunov function V (x), a
continuous positive definite function W (x), class K∞ functions α1, α2, and a class-K function ρ such that for all
x ∈ Rn,

α1(∥x∥p) ≤ V (x) ≤ α2(∥x∥p) (41)
L V (x) ≤ −W (x) + ρ(∥σ∥F) (42)

where
V (x) ≤ α3(W (x)) (43)

for some concave class-K∞ function α3, then the system is noise-to-state stable in probability. Here, ∥ · ∥F denotes the
Frobenius norm. Specifically, for any ϵ ∈ (0, 1],

P
{
∥x(t)∥p > α−1

1

(
2
ϵµ (α2(∥x0∥p), t)

)
+ α−1

1

(
2
ϵα3 (2ρ(∥σ∥F))

)}
≤ ϵ (44)

where the class-KL function µ(a, τ) is defined by the solution to

dy

dτ
= −1

2
α−1
3 (y(τ)), y(0) = a (45)

Furthermore, if α1 is convex, then the system is pth moment noise-to-state stable in probability such that

E {∥x(t)∥p} ≤ α−1
1 (2µ (α2(∥x0∥p), t)) + α−1

1 (2α3 (2ρ(∥σ∥F))) (46)

The convexity conditions in Lemma 2 are not required in Lyapunov stability theorems for deterministic systems [41].
They are needed here to leverage Jensen’s inequality, where any convex function α of a random variable X satisfies
α(E{X}) ≤ E{α(X)} [42, Ch. 3]. See [30] for details on how this property applies to Lemma 2.

§See [41, Ch. 3] for the definitions of these comparison functions and properties of the K and KL function spaces.
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2. Noise-to-State Stable Wind Observer
Now, we aim to select error coordinates whose origin is proven noise-to-state stable using Lemma 2. Like the

deterministic case [40], consider the invariant error coordinates

η(z,x,y) = φγ(y)(z) + ℓ(ϱγ(y)(y))−φγ(y)(x) (47)

They are invariant in the sense that η : Rn ×X ×Y → X is an invariant map. They are valid error coordinates because
η = 0 if and only if (z,x,y) ∈ Z , the zero-error manifold prescribed in Eq. (31). Expanding Eq. (47), we have

ηvr = zvr +L
q
vrR

T
IBq +L

ω
vrω − vr (48a)

ηw = RT
IBzw +Lq

wR
T
IBq +L

ω
wω −RT

IBw (48b)

Using α from Eq. (37), the application of Itô’s rule to η yields the invariant error SDE

dηvr =
(
−S(ω)ηvr + 1

mFvηvr −Lq
vr (ηvr + ηw)−L

ω
vrI

−1Mvηvr
)
dt+

[
RT

IB Lω
vr − I

]
σdW (49a)

dηw =
(
−Lq

w (ηvr + ηw)−Lω
wI

−1Mvηvr − S(ω)ηw
)
dt+

[
−RT

IB Lω
w 0

]
σdW (49b)

which we may compactly write as

dη =
(
A(t)−LC(t)

)
η dt+

(
B(t)−LD

)
σdW (50)

where

A(t) =

[
−S(ω(t)) + Fv(t)/m 0

0 −S(ω(t))

]
C(t) =

[
I I

I−1Mv(t) 0

]

B(t) =

[
RT

IB(t) 0 −I
−RT

IB(t) 0 0

]
D =

[
0 0 0

0 −I 0

] (51)

Since y is a known signal, the stabilization of the invariant error SDE (50) is reduced to LTV observer design for the
fictitious linear input-output SDE

dξ = A(t)ξdt+B(t)σdW
dζ = C(t)ξdt+DσdW

(52)

where ζ is the observation process whose derivative is the typical output considered in the linear filtering problem.
The remarkable result here is that the solution to the gain design problem is almost the standard Kalman-Bucy filter.
The only barrier is that D has rows of zeros, meaning some of the outputs are noise-free. Since we are constrained
to the closed loop error dynamics (50) and cannot consider more general formulations (e.g., taking derivatives of the
noise-free output [43]), we consider a blended approach to tuning which does not necessarily produce the minimum
variance estimate, but still will be shown to be noise-to-state stable. First, notice the structures ofB andD imply that
the components of dW entering the dξ and dζ equations are distinct; that is, the “process noise” and “measurement
noise” in Eq. (52) are uncorrelated. Accordingly, let

B̄ =

[
RT

IB −I
−RT

IB 0

]
, D̄ =

[
0

−I

]
(53)

reflect the non-zero input channels ofB andD, respectively. To circumvent the rank deficiency of D̄D̄T, define

R̄ =
[
D̄σM D̃

] [
D̄σM D̃

]T
(54)

where D̃ ∈ R6×3 is a tuning parameter that ensures R̄ is invertible. The positive definite matrix R̄ can be thought of as
the power spectral density of an augmented measurement noise vector in Eq. (52). For the process noise, we have

Q̄ = diag(σwσ
T
w,σFσ

T
F ) (55)

SinceA(t) andB(t) are bounded, uniform observability of the pair (A(t),C(t)) is a sufficient condition [44] for the
existence of a bounded solution P (t) to the differential Riccati equation

Ṗ (t) = A(t)P (t) + P (t)A(t)T − P (t)C(t)TR̄−1C(t)P (t) + B̄(t)Q̄B̄(t)T (56)

Assuming uniform observability, let the observer gain matrix satisfy

L(t) = P (t)C(t)TR̄−1 (57)
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Remark 2. Requiring observability of (A(t),C(t)) is not overly restrictive. Most nonlinear aerodynamic models for
both fixed-wing and multirotor aircraft satisfy this observability requirement. For example, constructing Fv andMv

from the large-domain fixed-wing and multirotor models given in [45] and [46], respectively, both yield observability.
The theoretical results are demonstrated in simulations of a multirotor aircraft in the Section V.

Finally, we apply a time-varying version of Lemma 2 to prove noise-to-state stability and obtain probabilistic
guarantees on the stability of the invariant error system (50). Consider the Lyapunov function

V (t,η) = ηTP−1(t)η (58)

where P (t) satisfies Eq. (56). Consider the time interval T = [0, T ) and let

k1 = inf
t∈T

λmin(P
−1(t)), k2 = sup

t∈T
λmax(P

−1(t)) (59)

Then by the Rayleigh-Ritz inequality,
k1∥η∥2 ≤ V (t,η) ≤ k2∥η∥2 (60)

to satisfy Eq. (41). The expected rate-of-change of V is

∂V

∂t
+ L V = −ηT

(
CT(t)R̄−1C(t) + P−1(t)B̄(t)Q̄B̄T(t)P−1(t)

)
η

+
1

2
Tr
(
σT
(
B(t)−LD

)T
P−1

(
B(t)−LD

)
σ
)

(61)

Let

k3 = inf
t∈T

λmin

(
CT(t)R̄−1C(t) + P−1(t)B̄(t)Q̄B̄T(t)P−1(t)

)
(62)

k4 = sup
t∈T

Tr
((
B(t)−LD

)T
P−1(t)

(
B(t)−LD

))
(63)

By the definition and sub-multiplicative property of the Frobenius norm,

∂V

∂t
+ L V ≤ −k3∥η∥2 +

1

2
k4∥σ∥2F (64)

to satisfy Eq. (42). Recalling the positive integer p represents the order of a particular statistical moment of interest, the
comparison functions in Eqs. (41)–(43) of Lemma 2 are

α1(a) =

{
k1a

2, p = 1

k1a, p = 2
, α2(a) =

{
k2a

2, p = 1

k2a, p = 2
, α3(a) =

k2
k3

a, ρ(a) =
1

2
k4a

2 (65)

which proves noise-to-state stability of the invariant error system (50). Furthermore, since α1 is convex, the error system
is also pth moment noise-to-state stable. Because α3 is linear, the class-KL function µ is simply

µ(a, τ) = a exp

(
−1

2

k3
k2

τ

)
(66)

Therefore, the invariant error system (50) is uniformly noise-to-state stable with guarantees that

P

{
∥η(t)∥ >

√
2

ϵ

k2
k1

∥η0∥

√
exp

(
−1

2

k3
k2

t

)
+

√
2

ϵ

k2k4
k1k3

∥σ∥F

}
≤ ϵ (67a)

E {∥η(t)∥} ≤
√
2
k2
k1

∥η0∥

√
exp

(
−1

2

k3
k2

t

)
+

√
2
k2k4
k1k3

∥σ∥F (67b)

P
{
∥η(t)∥2 >

2

ϵ

k2
k1

∥η0∥2 exp
(
−1

2

k3
k2

t

)
+

2

ϵ

k2k4
k1k3

∥σ∥2F
}

≤ ϵ (68a)

E
{
∥η(t)∥2

}
≤ 2

k2
k1

∥η0∥2 exp
(
−1

2

k3
k2

t

)
+ 2

k2k4
k1k3

∥σ∥2F (68b)
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The probabilistic convergence guarantees in Eqs. (67) and (68) can be extremely useful. Equations (67a) and (68a)
may be used to provide confidence intervals on bounds of the exponential convergence. For example, one can conclude
there is a 1% chance that ∥η(t)∥ ever exceeds

10

√
2
k2
k1

∥η0∥

√
exp

(
−1

2

k3
k2

t

)
+ 10

√
2
k2k4
k1k3

∥σ∥F

From another perspective, one may wish to simply know bounds on the steady-state statistics. That is,

E {∥η(∞)∥} ≤
√

2
k2k4
k1k3

∥σ∥F and E
{
∥η(∞)∥2

}
≤ 2

k2k4
k1k3

∥σ∥2F

3. Alternative Tuning Approach
Altogether, the noise-to-state stability guarantees in Eqs. (67) and (68) are a principled quantification of wind

estimation performance in the presence of both modeling error and turbulence. However, these bounds may be overly
conservative, especially in scenarios where k1 ≪ k2. An alternative approach is to consider Q̄ and R̄ as tuning
parameters rather than noise power spectral densities. In this case, it is beneficial to choose Q̄ and R̄ to optimize the
noise-to-state stability bounds. In contrast to the blended approach described earlier, we call this the optimal bounds
approach to tuning the observer. Examining Eqs. (67) and (68), we let

Jinit =
k2
k1

, Jrate =
k2
k3

, and Jss =
k4
k3

(69)

which are proportional to the guaranteed initial error, inverse of the convergence rate, and steady-state error, respectively.
This observation motivates choosing the penalty matrices in the design of the observer gain matrix to minimize the cost
function

J = Jinit + κ1Jrate + κ2Jss (70)

where κ1 and κ2 are non-negative weighting parameters. To simplify this optimization, let A0, B0, and C0 be
the constant matrices defined by evaluating Eq. (51) at some nominal flight condition. Then, let L0 = P0C

T
0 R̄

−1

where P0 satisfies the algebraic Riccati equation A0P0 + P0A
T
0 − P0C

T
0 R̄

−1C0P0 + B̄0Q̄B̄
T
0 = 0. Using a

constrained optimization solver, J can be minimized over Q̄ and R̄ while constraining Q̄ and R̄ to be positive
definite and norm bounded (e.g., ∥Q̄∥F ≤ 100 and ∥R̄∥F ≤ 100). A comparison between the tuning approaches of
Sections IV.C.2 and IV.C.3 will be made through numerical simulation in the following section.

V. Simulation Results
A. Simulation Scenario

The stochastic symmetry-preserving reduced-order wind observer was implemented on simulated flight data for the
small quadrotor UAV considered in [46] whose geometry is shown in Figure 3. Neglecting velocity-dependent inflow

b1

b2

b3

b2

ℓ

h

Ω1

Ω2

Ω3

Ω4

Fig. 3 Quadrotor geometry.
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effects, airframe drag, and motor inertia for simplicity, we consider the following nonlinear aerodynamic model.

Fx = ρπR2Nrur

(
−CHµx

Rδt− CHµ0,µx
ν0 − CHµx,µz

wr

)
(71a)

Fy = ρπR2Nrvr
(
−CHµx

Rδt− CHµ0,µx
ν0 − CHµx,µz

wr

)
(71b)

Fz = ρπR2
(
− CT0

R2Nrδ
2t+ CTµ0

RNrν0δt+ CTµz
R
(
Nrwrδt− pδa− qδe

)
− CTµ2

x
Nr(u

2
r + v2r )

)
(71c)

Mx = ρπR2
(
− CRµx

R2urδr + CT0
R2δ2a− CTµ0

Rν0δa− CTµz
R
(
wrδa− 1

2ℓ
2(Nrpδt+ qδr)

)
− CHµx

RNrhvrδt− CHµ0,µx
Nrhvrν0 − CHµx,µz

Nrhvrwr

)
(71d)

My = ρπR2
(
− CRµx

R2vrδr + CT0R
2δ2e− CTµ0

Rν0δe− CTµz
R
(
wrδe− 1

2ℓ
2(Nrqδt+ pδr)

)
+ CHµx

RNrhurδt+ CHµ0,µx
Nrhurν0 + CHµx,µz

Nrhurwr

)
(71e)

Mz = ρπR2
(
CQ0

R3δ2r + CQµ0
R2ν0δr + CQµz

R2
(
wrδr − pδe− qδa

)
− CQµ2

z
RNrℓ

2pq

− CHµx
R(urδa+ vrδe) +

1
2CHµx,µz

Nrℓ
2(urp+ vrq)

)
(71f)

Here, ρ is the air density, R is the rotor radius, Nr = 4 is the number of rotors, ν0 is the rotor inflow velocity in
hover, ℓ is the arm length, h is the height of the rotor disc above the vehicle center of gravity, and δ = (δt, δa, δe, δr),
δ2 = (δ2t, δ2a, δ2e, δ2r) are virtual actuators satisfying

δt

δa

δe

δr

 = Mix


Ω1

Ω2

...
ΩNr

 ,


δ2t

δ2a

δ2e

δ2r

 = Mix


Ω2

1

Ω2
2

...
Ω2

Nr

 (72)

for motor speeds Ω1, . . . ,ΩNr
. The mixing matrix Mix is determined by the geometry of the aircraft (Figure 3) and is

given for the quadrotor in consideration as follows:

Mix =


1
4

1
4

1
4

1
4

−ℓ
√
2
2 +ℓ

√
2
2 +ℓ

√
2
2 −ℓ

√
2
2

+ℓ
√
2
2 −ℓ

√
2
2 +ℓ

√
2
2 −ℓ

√
2
2

+1 +1 −1 −1

 (73)

Note that δ and δ2 are not independent but rather are related through Mix. Therefore, we consider δ to be the control
input.

To demonstrate the theoretical performance guarantees, the stochastic aircraft dynamics and observer were simulated
using the Euler-Maruyama scheme [47, Ch. 10] with all assumptions satisfied. That is, the aerodynamic force and
moment satisfy Assumption 3 and the wind is Brownian motion to satisfy Assumption 1. For all simulations, the
components of σ were

σw = 0.5 I, σM = diag(2.30, 2.21, 5.83)× 10−2, σF = diag(3.55, 3.55, 1.77)× 10−2

For this ideal case, we decompose the nonlinear aerodynamic model in Eq. (71) according to Eq. (6) and evaluate the
argument vr in F0, Fv , etc. to a nominal value of zero. Note this only affects the few terms in Eq. (71) that are nonlinear
in air-relative velocity. In all simulations, the components of the initial apparent wind velocity were wN = 10 m/s,
wE = −10 m/s, and wD = 0 m/s.

To showcase the nonlinear stability guarantees and global nature of the observer, a large-amplitude multisine input
excitation was injected on top of the feedback control signal (Figure 4a). The multisine was constructed with frequencies
ranging from 0.01 to 1 Hz to effectively explore the state space as seen in Figure 4.

The observability condition mentioned in Remark 2 was verified for each simulated trajectory. The LTV observability
Gramian Go(t0, tf ) was numerically constructed backwards in time from tf = 10 to t0 = 0. As shown in Figure 5
for the same simulation as Figure 4, the minimum eigenvalue of the observability Gramian is bounded away from
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Fig. 4 Sample paths of the aircraft state and inputs in turbulent wind.

zero backwards in time, implying observability of (A(t),C(t)) on [t0, 10] for any t0 ≥ 0 [48, Ch. 9]. Also shown in
Figure 5 is the minimum eigenvalue of the observability Gramian for the nominal hover flight condition in zero wind,
showing persistent maneuvering is not a requirement for this observer.
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Fig. 5 Minimum eigenvalue of the LTV observability Gramian on the interval [t0, 10].
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B. Blended Approach to Tuning
First, the blended tuning approach described in Section IV.C.2 was considered. The free tuning parameter D̃ was

chosen as D̃ = [I 0]T × 10−3. To evaluate the conservatism of the noise-to-state stability guarantees, 1000 simulations
of the stochastic aircraft dynamics and observer with initial estimate x̂ = 0 were conducted to numerically approximate
the probability density of ∥η(t)∥. The result of these simulations is shown in Figure 6, where we see exponential
convergence to a stationary distribution within about one second. The computed mean µ(t) = E{∥η(t)∥} and standard

Fig. 6 Probability density of the error ∥η(t)∥ using the blended tuning approach.

deviation σ(t) =
√

E{(∥η(t)∥ − µ(t))2} are shown in red. For this tuning, the noise-to-state stability guarantees held
across all simulations with

k1 = 15.6, k2 = 5.9× 104, k3 = 240, and k4 = 1.21× 105 (74)

The corresponding bounds on the first and second moments of ∥η(t)∥ are shown in Figure 7 along with the moments
computed from Monte-Carlo simulations. Clearly, these bounds are extremely conservative and thus not useful.
Regardless, the representative time history in Figure 8 along with the Monte-Carlo results demonstrate the excellent
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Fig. 7 First and second moment noise-to-state stability guarantees for the blended tuning approach.

performance of the observer even though the statistical guarantees are too conservative to support it.
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Fig. 8 Sample time history of state estimates using the blended tuning approach.

C. Optimal Bounds Approach to Tuning
Next, we consider the alternative tuning approach described in Section IV.C.3 in which the aim is to minimize a

weighted sum of the guaranteed initial error, inverse of the convergence rate, and steady-state error. With κ1 = 10 and
κ2 = 1, the cost function J given in Eq. (70) was minimized to yield

Q̄ =



13.60 0.65 −0.28 22.98 1.76 −0.71

0.65 15.71 0.75 1.90 29.06 0.45

−0.28 0.75 18.86 −0.24 1.27 15.66

22.98 1.90 −0.24 46.92 4.82 −1.51

1.76 29.06 1.27 4.82 63.07 0.68

−0.71 0.45 15.66 −1.51 0.68 91.99


, R̄ =



16.79 −2.15 0.02 0.44 3.17 −0.02

−2.15 8.91 −0.18 −1.78 −0.39 0

0.02 −0.18 4.08 0.04 −0.01 0

0.44 −1.78 0.04 1.06 0.08 0

3.17 −0.39 −0.01 0.08 1.25 −0.01

−0.02 0 0 0 −0.01 52.79


Again, we perform 1000 simulations of the stochastic aircraft dynamics and observer to numerically approximate the
probability density of ∥η(t)∥. These results are shown in Figure 9, where we see exponential convergence to a stationary
distribution distinct from Figure 6. Note the difference in scale between Figures 6 and 9. For this tuning approach, the

Fig. 9 Probability density of the error ∥η(t)∥ using the optimal bounds tuning approach.
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noise-to-state stability guarantees held across all simulations with

k1 = 0.06, k2 = 0.24, k3 = 0.14, and k4 = 5.08 (75)

The guarantees shown in Figure 10 are much less conservative than the previous tuning, but are still not a reflection
of the Monte-Carlo results. Further, as seen in Figure 11, this tuning approach yields less conservative bounds at the
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Fig. 10 First and second moment noise-to-state stability guarantees for the optimal bounds tuning approach.

expense of performance. The convergence of the first and second moments of the estimate error is slower than in
Figure 6. Similarly, the computed steady-state mean and standard deviation are roughly twice as large.
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Fig. 11 Sample time history of state estimates using the optimal bounds tuning approach.

VI. Conclusions
A stochastic symmetry-preserving, reduced-order observer has been developed to estimate wind from aircraft motion

in turbulence. Leveraging the invariance of the stochastic aircraft dynamics under Lie group actions, the proposed
observer achieves linear error dynamics, enabling the application of standard observer/estimator design techniques,
such as Kalman-Bucy filtering. Noise-to-state stability guarantees provide probabilistic bounds on the convergence of
the invariant error, although Monte-Carlo simulation revealed these bounds to be conservative. To address this, an
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alternative tuning approach was explored, offering less conservative bounds at the cost of poorer transient performance.
Future work will aim to obtain tighter bounds across various aircraft types (fixed-wing, multirotor, vertical takeoff and
landing). More physically accurate turbulence models will be considered along with experimental validation using
flight test data. By providing principled convergence guarantees, the proposed observer has the potential to support
safety-critical systems by providing provably accurate extended state estimates that enable enhanced autonomy.

Appendix: A Note on State Observers versus State Estimators
Consider a dynamical system (possibly random) with state space X and observation space Y . In short, we consider

a state estimate to be the output of a mapping from Y to functions on X . State estimates may be obtained from state
observers or state estimators, for which we make a distinction. Consider a dynamical control system represented by
differential equations of the form ẋ = f(x,u) + g(x,u)w where x ∈ X is the state vector, u ∈ U is the known
control input, andw ∈ W is an unknown disturbance (possibly random). Let y = h(x,u)+d(x,u)v be the measured
outputs of the system, where v ∈ V is an unknown measurement disturbance (possibly random).

The dynamical system ż = α(z,y,u) with the corresponding state estimate x̂ = ρ(z,y,u) is considered a state
observer if some stability claim can be made about the set E = {(x, z) | x = x̂}. The stability of E may be asymptotic,
input-to-state, stochastic, noise-to-state, etc. Examples of state observers include linear Luenberger observers, H∞
filters, passivity-based observers, high-gain observers, and the symmetry-preserving reduced-order observer considered
in this paper.

A state estimator is not concerned with the stability of a state estimate, but rather with producing an informed
mapping from measurements to statistics of points in the state space. Such statistics include the conditional mean
x̂ = E{x(t)|{y(τ)}τ≤t}, the conditional covarianceE{[x(t)−x̂(t)][x(t)−x̂(t)]T|{y(τ)}τ≤t}, or even the conditional
probability density function p(x(t)|{y(τ)}τ≤t). Examples of state estimators include the Kalman filter, unscented
Kalman filter, exact nonlinear filters (see [49] for examples), and particle filters. It is important to note that state
estimators can also be state observers. For example, the Kalman filter can also be shown to be a noise-to-state stable
observer.
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