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I. Introduction

IND estimation from air vehicle motion is useful for many
Wreasons, including weather forecasting and air traffic man-
agement [1} 2. The ability to estimate wind indirectly (i.e.,
without specialized instrumentation) is of particular interest due
to the increasing ubiquity of small unmanned aircraft systems
(UASs) [3] and the unobtrusive/low-cost nature of using op-
erational sensors (e.g., air vehicle GPS, accelerometers, and
gyroscopes). A common goal is to extract a slowly varying
mean component of the wind from higher frequency fluctuations
(gusts or atmospheric turbulence). These bulk flows are used
in high fidelity numerical weather models [4] and urban air
mobility (UAM) path planning algorithms [S]], among several
other applications.

Generally, wind estimation methods can be grouped into two
major categories: model-based and model-free. Model-based
estimation requires accurate aerodynamic and propulsion (aero-
propulsive) models of the aircraft to generate state and wind
estimates [6, [7]. Model-based methods do not require direct
measurement of the wind, such as with an air data sensor, and
are thus readily applied to small UASs which typically do not
have pitot-static systems. Model-free methods, alternatively,
do not require aero-propulsive models but instead use direct
air measurements and inertial velocity to resolve wind speed
and direction. However, even if a UAS has some form of
direct air data measurement, model-free methods may require
persistent excitation (i.e., constant maneuvering) to generate
accurate wind estimates [8]]. This requirement is impractical
for normal operations which have significant periods of straight-
and-level cruise. For the above reasons, this work focuses on
model-based wind estimation.

In many UAS-based wind estimation applications, as sur-
veyed in [9] and [8]], some variation of the well-known Kalman
filter is used as a state estimator to determine the wind velocity.
Examples are a two-stage Kalman filter in [10]], an unscented
Kalman filter in [[11]], and the traditional linear Kalman filter
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in [12]. Such filters are almost always implemented in discrete
time, to be compatible with modern sampled data systems for
measurement and control, but the continuous-time version of
the Kalman filter, known as the Kalman-Bucy filter, is used for
comparison in this work.

The Kalman-Bucy filter is the minimum covariance linear
state estimator for a perfectly known system model subject
to white, random disturbance processes (measurement and/or
process noise) with known mean and covariance [13]. If the
disturbance is Gaussian, then it is the optimal minimum covari-
ance state estimator. When estimating the local bulk fluid flow
in a wind field, the higher frequency fluctuations are not well-
approximated as a Gaussian, white random disturbance process.
Traditionally, this has been overcome by using a shaping filter
such as the Dryden turbulence model which is driven by Gaus-
sian, white noise. However, such probabilistic models for the
atmospheric disturbance process are often poor approximations.
Often, this information is either unknown or the turbulence mod-
els do not sufficiently capture the atmospheric dynamics. This is
especially true at low altitudes and in urban environments where
wind data are especially valuable for establishing boundary con-
ditions used in numerical weather predictions [[14]. To address
this problem, we propose an H-infinity (Ho) filtering approach to
wind estimation, which makes no assumptions about the statistics
of the disturbance, but instead assumes the system is subject to
arbitrary finite-energy exogenous inputs. The optimal H. filter
does not aim to minimize estimate error in a quadratic sense,
but rather minimizes the worst-case measure of the mapping
from disturbances to estimate error. Limiting the worst-case
error is a useful feature of a wind estimator for the applications
mentioned. The H., approach is thus an attractive alternative to
the Kalman-Bucy filter, and similar alternatives, for the problem
of estimating bulk wind flow in turbulent conditions.

In Section[l] the aircraft motion model used to develop the
state estimators is presented. Section [[I]] introduces the He,
filter. Section [[V|presents the steps involved in the synthesis
of the H, filter and introduces the Kalman-Bucy filter used
for comparison. Section[V]presents the results of applying the
two filters to experimental flight test data. Section|[V]|presents
conclusions.

I1. Aircraft Motion in Wind

In developing the aircraft motion model for model-based
estimation, we begin by defining the wind field. We then present
a nonlinear flight dynamic model, with a common simplification
(Assumptionm) for the effect of wind on the aircraft, and linearize
about an arbitrary steady motion. Last, we incorporate a low-
pass filter that allows the user to tune the frequency content
of the wind estimates within the limits of the aircraft dynamic
response, acknowledging that wind fluctuations are far more
complex (Assumption [2) than the first simplifying assumption
allows.

A. Wind Field
Consider an aircraft in a wind velocity field, W, that varies
in space and time. At an instant of time, the wind velocity that
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would exist at the aircraft center of gravity (CQG) if the aircraft
were absent, the apparent wind, is

w(t) = W (X(1).0) (1)
where X = [Xy Xg Xp]' is the north-east-down position of
the aircraft CG in a reference frame 7. Although 77 is fixed
to the Earth’s surface, we consider it to be an inertial reference
frame, as is commonly done over short time intervals, and we
define it using the orthonormal triad {i}, i, i3}. The total time
derivative of the apparent wind is

dw W (X,1)

.\ AW (X, 1) dX
dt ot

oxX dt @

Adopting the standard overdot notation, ("), for the total time
derivative, and suppressing the arguments, gives

. 0w oW _
W=

= Tax 3)

B. Aircraft Nonlinear Equations of Motion in Wind

Having introduced the dynamics of the wind field in Sec-
tion we now briefly present the aircraft equations of motion
relative to the wind. The reader is directed to [[15] and [[16] for a
full treatment of the derivation. Begin by defining the orthonor-
mal aircraft body reference frame, Fg, defined by unit vectors
{b1, b, b3} originating at the CG, where b points forward, b,
points out the right wing, and b3 completes the right-handed
reference frame. The transformation mapping free vectors from
¥ to 77 is given by the rotation matrix

Ri(0©) = elesx1y yleax]0 lerx] ¢ 4)
where ® = [¢ 6 ¢]T is the vector comprising the aircraft
roll, pitch, and yaw Euler angles, respectively. Here, e; =
[100]T, etc., and [(-)X] is the skew-symmetric cross product
equivalent matrix satisfying [aX]b = axb. Note that Rg;(®) :=
Rﬂ31 (©) = RIB(O) because Rjp is orthonormal. The aircraft
kinematics are given by

X = RIB(("))V (5)

(6)

where v = [u v w]" is the aircraft velocity with respect to
the inertial frame and w = [p ¢ r]7 is the aircraft angular
velocity with respect to the inertial frame, where both v and w
are expressed in the body frame. While the matrix differential
Eq. (6) holds for any parameterization of Ryg, adopting Euler
angles gives the more compact system

Ri5(0) = Rip(0) [wX]

1 singtanf cos¢tanf| (p
O=Lg(@Ow=|0 —sin¢g q
0 singsecd cosgsecH||r

)

cos ¢

Recall that the aerodynamic forces, F, and moments, M, depend
on the velocity of the aircraft relative to the wind. Let

v =V — Rpi(O)w ®)

where v, = [u; v, w;]' is the velocity of the body’s center of
mass with respect to the wind, given in the body frame. Eq. (§)
is known as the wind triangle. To simplify the derivation of
the aircraft equations of motion, the following assumption is
adopted:

Assumption 1 The air-relative translational and angular ac-
celerations due temporal and spatial variation in the wind field
are negligible. In other words, %—VZV and g—‘; are ignored in the

aircraft dynamics.

Assumption [T may seem incompatible with the motivating
challenge of estimating variations in the wind velocity. However,
the assumption does not impede the model-based filter from
adjusting wind velocity estimates based on measurements. This
assumption, which is consistent with [2, [17]], could be relaxed
but it simplifies the results presented here for the H, filter. One
consequence of Assumption [I]is that the air relative angular
velocity is equal to the vehicle angular velocity, w. We therefore
assume that the aerodynamic forces and moments have the
general dependence

F = F(vn (,(), u)7 M = M(vr»w9u) (9)
where u = [67 64 J. 6,]7 are the throttle, aileron, elevator,
and rudder control inputs, respectively.

The aerodynamic model was found using the methods from
[18]] and references therein. The model has non-dimensional

coefficients of the form

Cx = Cx, +Cx,a + Cx_,a* + Cx, 6.+ Crér  (10a)
Cz=Cz,+Cz,a+Cz,q (10b)
Cin = Cpny + Cn@ + Cp G + Ciny e (10c)
Cy = Cy,B+ Cy, p + Cy, 7 + Cy, 64 + Cy,,6; (10d)
Cr=CB+Cpp+C, 0 (10e)
Cp = CuyB+ Cp, 7 + Cryy, 6 + Cry O (10f)

where the propulsion coefficient, Cr, is modeled using informa-
tion from [19]]. Here, an overhat (*) indicates a nondimensional
angular rate. (The same notation will later be used to denote
an estimate of a state variable.) The angle-of-attack, @, and
angle-of-sideslip, 3, are defined as follows:

@ = tan”! (&) and B =sin"! (%

Uy r

) (11)

where V; = ||v||. Note that Egs. (9) and omit the common
quasi-steady approximations of unsteady effects (e.g., & and
B). Thus, the well established nonlinear equations of motion,
covered at length in [15} 20]], adapted for the assumed wind field
are

X =Rp(O)v, +w (12a)

O=LO®w (12b)
1

V=V X W+ gRp(O)e3 + aF(vr, w,u) (12¢)

o=TI""Ioxw+M@,w,u)) (12d)



where 1 is the matrix of aircraft moments and products of inertia
as computed in Fp. At last, the aircraft state and measurement
equations are

(13a)
(13b)

x =f(x,u,w)
y= h(x,u,v)

where the state, input, and wind vectors are
T T T )" T
x=|X" 0 v, w ] , U= [67 0a 0. 6,] ,

T
w= [W N WE W D]

(14)
and where v is an unknown finite-energy measurement distur-
bance (i.e., noise), which is described further in Section [II]
We will now present the linearized equations of motion for the
aircraft in a wind field.

C. Aircraft Linear Equations of Motion

For the purpose of estimating the wind, it is assumed that
the aircraft state of motion remains in the neighborhood of a
nominal, equilibrium flight condition over a desired time or
distance. The most general steady motion for a fixed-wing
aircraft is a steady turn at constant climb rate [15, §5.9]. This
nominal flight condition is defined with regard to the mean wind
field which, again, is assumed to be steady and uniform for
the purpose of the flight dynamic model. Let xeq, #eq, and
Weq = 0 denote the state and control variables and the mean
wind velocity corresponding to a given, steady flight condition
such as a coordinated turn in still air. (Although we allow for
accelerated steady motions, such as turning flight, we will use the
term “equilibrium” and the subscript “eq”” when referring to the
nominal flight condition.) Having defined a nominal, equilibrium
state of motion, and assuming that the flight dynamic model is
exact, any perturbations from the equilibrium flight condition
that are not attributed to the initial state or control inputs can be
ascribed to the wind disturbance.

To prepare for the formulation of the H,, filter given in
Section it is necessary to develop a linear time-invariant
(LTT) model from the equations of motion given in Section [[l.B
Define

_9f = n-
ox XeqsUeq:Weq ou Xeq,Ueq-Weq ow Xeq,Ueq-Weq
15)
The linear perturbation equations are
Ax(t) = AAx(t) + BAu(t) + IIAw (1), Ax(0) = Axg (16a)
Ay(t) = CAx(t) + DAu(t) + Av (16b)

where Ax, Au, and Aw are perturbations from the equilibrium
state, control, and wind vectors. Additionally, Ay is the mea-
surement perturbation, C and D are the output and feedthrough
matrices, respectively, and A is the measurement noise input
matrix. For brevity, we will drop the A and (#) notation.

D. Augmented Low-pass Filter
As was motivated in Section [} we often wish to estimate the
mean wind in the presence of disturbances. Thus, we present

the following assumption:

Assumption 2 The wind is a superposition of a bulk flow velocity
(constant or slowly varying), w, and a higher frequency, finite-
energy disturbance (gusts or turbulence), 6w, so that

w(t) =w(t) +ow(r) (17)
Eq. is known as a Reynolds decomposition [21)] of the wind.

With Assumption [2]in place, we can design a low-pass filter
H;; (s) to isolate the wind fluctuations of interest such that
w(s) = Hy(s)w(s) (18)

where w () is the Laplace transform of w (). Suppose Eq.
has the state-space realization

l=Ayl +Byw (19a)
ZAWg+Bw(W+6W) (19b)
w=Cyl (19¢)

where { is an intermediate state vector in the map from the wind
input w to the output of interest, w. Combining this filter with
the system in Eq. (T6) gives the augmented system

. A I1Cy; B I
XA = XA+ u+ ow,
0 AW +chw 0 BW
—— N——

Ap Ba I
x4(0) =x4, (20a)
ya = [C 0] XA +Du+Av (20b)

N——

Ca

where the augmented state is x 4 = [xT e T] T. As will be shown
in Section|[IV.B| we can use H; (s) to specify the wind frequency
content of interest. With the low-pass filter-augmented system
defined, we can now discuss the H,, filter.

III. Steady-State H, Filter
For the system described in this work the measurements do
not directly depend on the inputs and thus D = 0. Grouping the

exogenous inputs to Eq. asn = [ow" VT]T gives

iz Auwa+Bau+| 10 21a)
= u a
A AXA A B, 0']
————
G
yA=CAxA+[0 A]I] (21b)
—_———
F
L, 0
= X 21c
z 0 C, A (21¢)
—_———



where z represents the outputs of interest when designing a
filter that minimizes the worst-case effect of the exogenous
disturbances, as will be shown presently. A Luenberger filter for
the system of Eq. (Z) is of the form

$a=Apafa+Bau+K(ya—Caka), £4(0)=%s (222)

2=L#, (22b)

where the overhat, ("), now denotes a state estimate, rather than
a non-dimensional angular rate, and where K is a generic filter
gain matrix to be determined. Now define ¥4 = x4 — X 4. Thus,
the error dynamics of the filter are

¥a=(Aa—-KCuZs+(G-KF)p
T=z-2=L%4

(23a)
(23b)

Let H,, (s) represent the transfer function from exogenous inputs,
7, to estimate error, Z for the system @) Also, recall from
linear systems theory [22] that the Ho, norm of system H,, (s)
is given by

1Hz (5)lleo = €58 5up Tmax (Hzy (jwu)) (24)

wy R
where o denotes the largest singular value. Additionally,
define £ [0, o0) as the space of square-integrable functions with
bounded energy such that

n € £5[0, ) =

/0 In@)[2di <o (25)

From [23], §7.8], we apply the following lemma:

Lemma 1 (Adapted from Lemma 7.1(c) in [23|]) For all n €
L]0, 00), for a given y > 0 there exists a linear causal filter
such that Hs, (s) is asymptotically stable and ||Hz, (5)|lco <y
if and only if the algebraic Riccati inequality (ARI)

ATX+XA-YCo-ClYT+y2L"L
+(XG -YF)(XG -YF)" <0 (26)

has a solution X = X7 = 0andY € R™™ ywhere n is the number
of states and m is the number of measurements. Applying the
Schur complement to Eq. (26)) yields the linear matrix inequality

_ ALX+ XA -YCy—-C YT +y2LTL XG-YF

v GTXT-FTyT -1 <0
(27a)
X-0 (27b)
Finally, the H, filter gain, K, is
Ko=XY (28)

Lemmal[I]is valid for arbitrary finite-energy disturbances. As
described in [23], §7.1], this is in contrast to traditional minimum
variance filters, e.g., the well-known Kalman-Bucy filter. The
H.,, filter accepts noise as a deterministic disturbance with no
a priori knowledge of the disturbance process required (e.g.,
mean, covariance, normality, whiteness, etc.), save for the as-
sumption of bounded energy. This makes the H, filter well-
suited for applications where the characteristics of the noise are
unknown, such as in the present problem of wind estimation.

IV. Filter Synthesis for Wind Estimation

A. Research Aircraft

The research aircraft used in this effort is the My Twin Dream
(MTD), shown in Fig. [T} manufactured by My Fly Dream. It
is a radio-controlled foam aircraft with counter-rotating twin
electric motors and APC 10-in. diameter, 6-in. pitch (10x6)
propellers. The aircraft was instrumented with a Cubepilot
CubeOrange flight computer running PX4 firmware. The sensors
onboard the aircraft include triple-redundant accelerometers and
gyroscopes, two magnetometers, a real-time kinematic (RTK)
global positioning system (GPS) receiver, and a vaned air data
unit (ADU) for validating wind estimates. The MTD was chosen
for its simple construction, propeller location (to accommodate
the air data boom), and endurance of approximately 25 minutes.
The MTD’s physical properties are listed in Table [[, ~ The

Table 1 My Twin Dream (MTD) properties.

Property Symbol  Value  Units
Mass m 3.311 kg
Mean aerodynamic chord c 0.254 m
Projected wing span b 1.800 m
Wing reference area N 0.457 m?
Roll moment of inertia I x 0.319 kg-m2
Pitch moment of inertia Iyy 0.267 kg—m2
Yaw moment of inertia I, 0.471  kg-m?
Product of inertia Iy 0.024  kg-m?
Product of inertia Ixy, Iy ~0  kg-m?

Fig.1 My Twin Dream (MTD) aircraft.

parameters for the aerodynamic force and moment coefficients
in Eq. (I0) are given in [24]]. The propulsion coefficient comes
from a model based on the wind tunnel data from [[19]. The
accelerometers, gyroscopes, magnetometers and GPS produce
a navigation solution as part of the PX4 firmware, from which
we use position (X), attitude (@), and angular velocity (w) as
measurements, y, at a rate of 100 Hz. The PX4-provided X, O,



and w estimates also include time-varying covariances, E () [25]].
For our purposes these state estimate error covariances were
averaged over the duration of a representative steady-maneuver,
yielding the constant measurement noise covariance

E = diag(0.026 m?,0.026 m?,0.151 m?,0.004 rad?,

d? d? d?
0.004 rad?, 0.054 rad’, 0.004 5, 0.004 =, 0.054 )
S S S

(29)

1. Air Data Unit

The wind estimates were compared to reconstructed wind
data from a vaned ADU mounted out the nose of the aircraft
as pictured in Figure[T} The ADU provides in situ relative air
velocity measurements. This sensor was developed, manufac-
tured, and calibrated by the Nonlinear Systems Laboratory at
Virginia Tech. It consists of two 3D printed vanes attached to
magnetic rotary encoders and a 3D printed Kiel probe connected
to a MS5525DSOF| pressure sensor. The pulse-width modulation
(PWM) rotary encoders are read at a sample rate of 200 Hz by
a microcontroller that communicates with the flight computer
over the CAN bus via a custom PX4 driver. The pressure sensor
is natively supported by PX4 and configured to log calibrated
airspeed data at 10 Hz.

Let V, a, and S be the airspeed, angle-of-attack, and flank
angle reported by the ADU, respectively. By using GPS velocity
measurements v; (accuracy ~ 0.05 m/s), autopilot attitude esti-
mates (with quaternion estimate standard deviations ~ 1073), and
angular velocity measurements from the calibrated gyroscope
(noise and bias removed), the wind velocity may be reconstructed
as

w =7, — R (vapu — @ X Fapu) (30)

where vapu = Rpw(a, B)e;V;. Here, vapy is the air-relative
velocity at the geometric center of the ADU vanes, whose
position in the body frame is denoted rapy. The rotation
matrix Rpw (o, B) = e~[€2¥]1@¢le3x1B which maps free vectors
from the wind frame to the body frame, is parameterized by
the measured angle-of-attack, «, and the sideslip angle, 5 =
tan~! (tan(S r)cos(a)). The accuracy of the reconstructed wind
data can be characterized by propagating the measurement
uncertainty through Eq. (30). Due to the low error of the
constituent measurements, the reconstructed wind is treated
as a truth source for wind estimate validation. This air data
unit was validated in the Virginia Tech Aerospace and Ocean
Engineering department’s open jet wind tunnel both for steady-
state readings and dynamic response. The airspeed-dependent
cutoff frequencies of the vanes were found to be greater than
16 Hz, well above the fastest rigid body modes, which determine
an upper limit on the dynamic response of model-based wind
estimators.

2. Cascaded Filter Structure
The cascaded filter structure that is implemented on the MTD
UAS is depicted in Fig.[2} The PX4 state estimates X, ©, and

*Manufactured by TE Connectivity

w are treated as measurements for the wind estimator (H,, or
Kalman-Bucy filter). The wind estimator incorporates the 6
degree of freedom (DoF) aircraft model and frequency filter
model from Section [lII}and produces estimates of the aircraft
states and the low-pass filtered wind. For validation, the H., and
Kalman-Bucy wind estimates are compared to direct low-pass
(Hjy;) filtered ADU wind measurements, w. Note that the wind
estimators do not have access to the ADU measurements.

B. H., Filter Synthesis

The first step in synthesizing the H, filter is to linearize Eq.
(T2) in preparation for creating the augmented system Eq. (Z1).
To begin the linearization process, the trim states and controls
of Eq. are found via Matlab using a publicly available
local minimizing function, fminsa, which is based on [26]. The
nominal flight condition chosen for the results presented here
is straight-and-level flight at a constant airspeed, heading, and
altitude with zero wind. Any steady motion could be chosen,
however, since linearizing the flight dynamics about a steady
motion yields an LTI model, as required by the filtering methods
considered here.

The nominal state and control values are used in a lin-
earization routine to find the matrices of Eq. (I6). The routine
numerically approximates the Jacobians in Eq. by adap-
tively reducing the perturbation stepsize. The resultant matrices
A 4 and Bp are omitted for brevity. The matrix IT is found to be
33, where 1%¢ is an a X a identity matrix. The matrix is Hy
is dictated by the choice of filter from Eq. (T8).

For the present work, a first-order low-pass filter is imple-
mented such that

S 00
Hy(s)=| 0 2 0 31)
0 0 &5

where w, is the desired cutoff frequency in rad/s. Therefore, G
is

Bx3 03><9
G =093 (99 (32)
B;; 03%9

where 09%? is an a X b matrix of zeros. The C4 and D matrices
are

BX3 3%3 3x3 (3x3  (3x3
Ci= 03 B3 33 33 33| D= [09><4] (33)
03x3 033 33 X3 (3x3

since, for the avionics system described in Section we have
access to X, 0, and w. To simplify the comparison between
the H filter and the Kalman-Bucy filter in Section [[V.C| we
choose A = E. More generally, A can be chosen by the user to
describe the relative magnitude of measurement disturbances if
that information is known. With our choice, the matrix F is

F= [09x3 FJ] 34)
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Fig. 2 Cascade filter architecture.

For this work, we only wish to place performance guarantees on
the mean wind estimate, z = w. Thus, the desired state estimate
combination L from Egq. is

L= [03X‘2 CW] (35)
Note that even though the other aircraft states are not included in
the performance output, z, their estimate error remains bounded
and is asymptotically stable for 7 = 0. To obtain performance
guarantees on the total state vector, the matrix L would be chosen
accordingly. With all of the required matrices identified, Eq.
is solved using CVX in Matlab with the SDPT3 solver [27-H29]
to find the optimal H,, filter gain by minimizing y. For the
example presented, here the worst-case disturbance amplification
is y = 1.08. Recalling Lemmal[I] this means

2l _ | o

. (36)
712

|Hz5 (s)lleo = sup
nels

That is, the map from exogenous inputs to estimate error has a
worst-case gain of 1.08.

C. Comparative Kalman-Bucy Filter

To provide a comparison to the H,, filter, a steady-state
Kalman-Bucy filter was developed according to [23l §3.4.3] and
(30, §8.1.2]. Using Eq. (20), the steady-state Kalman-Bucy filter
is found by solving the continuous algebraic Riccati equation
(ARE)

AsP+PA" +Q - PCiR'CAP=0 (37)

where P = PT > 0. For the continuous-time Kalman-Bucy filter,

Q and R are the process and measurement noise power spectral
density matrices, satisfying

E[6w(t)ow' (1)] = Q5(t — 7)

E[v(t)v"(1)] = RS(t - 7)

(38)
(39)

These definitions are made under the assumption that dw and v
are mutually uncorrelated, continuous-time, white noise. If 6w
and v are Gaussian, then the Kalman-Bucy filter provides the
optimal estimate [23| §3.1]. Note that in general this is not the
case for 0w, as turbulence is neither white nor Gaussian [31].
Following [30l §8.1.2], R = I_ZTS where the sample time
T; = 0.01 s, given the 100 Hz sample rate. The constant
process noise power spectral density, @, was computed from
a representative maneuver. Using truth data from the air data
unit and the autopilot’s state estimator, the difference between

the true and modeled (Eq. [T6) state derivative is computed.
Then, @ is selected as the maximum power spectral density of
this difference signal over all frequencies. Specifically, for the
augmented wind states the Q matrix entries are the maximum
power spectral density of ow (Egs. and (I8)), calculated
using the ADU measurements.

The ARE of Eq. is solved for P using the Matlab function
icare(A’,C,Q, R). Finally, the Kalman-Bucy gain is found
from

Kx = PC R (40)

The Kalman-Bucy filter is implemented in the same manner as
the H., filter using Eq. (22). Thus, the only difference between
the Kalman-Bucy filter and the H, filter presented in this work
is the observer gain matrix Kx versus K. The gain matrices
are obtained using distinctly different theoretical approaches,
however, and as shown in the following section, the performance
of these filters is significantly different.

V. Flight Test Results

A flight test campaign was conducted at Virginia Tech’s
Kentland Experimental Aerial Systems (KEAS) Laboratory
airfield on September 28th, 2022 using the UAS described in
Section Data were gathered during four passes over the
ground control station (referred to as runs 1-4) at 76 m (250
ft) AGL when the wind conditions at ground level were gusty.
The test runs are shown in Fig. [3] where light orange segments
are paths connecting user-specified waypoints, chosen to align
with the cardinal directions, while the red curve shows the actual
aircraft path. The wide blue arrows, numbered 1, 2, 3, and 4, are
the four passes mentioned above. The prevailing wind was out
of the northwest. Gusty conditions were chosen since the goal is
to achieve accurate wind estimates under any condition in which
the UAS is able to fly. Since we are utilizing an LTI model we
restricted our maneuver to steady flight, specifically straight-and-
level unaccelerated flight. To evaluate the performance of the
filters three different cutoff frequencies w, € {0.5,2,5} rad/s
were chosen for the low-pass filter (31)) to capture slow, medium,
and fast wind fluctuations, respectively [32].

Figs. [@l{6] show the results of the Hs and Kalman-Bucy
(K-B) filters, as applied to the system in Eq. (20), using Run
3 from flight test data. For validation, the wind estimates are
compared to low-pass filtered ADU wind measurements. Run 3
was chosen because it exhibits the largest wind fluctuations in
all three directions.

In Fig. [ the low-pass filter cutoff frequency is 0.5 rad/s,



Fig. 3 Runs 1-4 from September 28th, 2022 flight test
campaign. The prevailing wind was out of the northwest
during the test campaign.

which corresponds to the relatively slow bulk flow of the wind.
As can be seen the H,, filter more closely tracks the filtered
wind shown in the dashed black line in the north and south
direction compared to the Kalman-Bucy filter. Conversely, the
Kalman-Bucy filter has marginally better accuracy in the down
direction. Figs. [5] and [f] present the results using a cutoff
frequency of 2 and 5 rad/s, respectively, and thus capture higher
frequency fluctuations. In both cases the H,, filter outperforms
the Kalman-Bucy filter.
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Fig. 4 Results from Run 3 with w, = 0.5 rad/s.

Lastly, Table 2] presents the root-mean-square (RMS) error
between the filter estimates and the low-pass filtered ADU
measurements for all four runs. The H, filter estimates are more
accurate in all three directions, except for wp with w. = 0.5 rad/s
as discussed above. In these cases, however, the Kalman-Bucy
filter estimates are only marginally better. Conversely, in several
of the cases tested the H,, filter estimates exhibit roughly half
the error of the corresponding Kalman-Bucy filter estimate.
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Fig. 6 Results from Run 3 with w. = 5 rad/s.

VI. Conclusions

This paper describes the concatenation of a low-pass filter
and a flight dynamic model which are then used to estimate the
bulk wind velocity despite the presence of turbulence. Unlike a
Kalman-Bucy filter, the H, filter requires minimal assumptions
about the process noise (i.e., turbulence) and measurement noise
and is thus more applicable to wind estimation where the wind
fluctuations cannot be assumed to be white, Gaussian noise.
In contrast to the Kalman-Bucy filter, the proposed H., filter
provides a guarantee on the worst-case error in the form of
a bounded mapping from the wind disturbance inputs to the
wind estimate error. Even in cases where both filters perform
similarly, the Kalman filter loses its theoretical benefits due to
the violation of its assumptions, whereas the H., filter retains its
theoretical guarantees. Furthermore, the inclusion of a low-pass
filter provides flexibility in specifying the upper frequency limit
of the wind variations one wishes to estimate. The combined
low-pass filter and H,, filter approach offers an effective means
of obtaining accurate wind estimates within a desired frequency
band while requiring minimal assumptions about the spectral
character of the wind disturbances.



Table 2 Root-mean-square error between filter estimates
and direct low-pass filter of measured wind. Error results
in bold are the lesser of the two filters. Note K-B = Kalman-

Bucy.
Filter Wind Cutoff Freq. Flight Test Run (error in [m/s])  Average
Direction  (w.) [rad/s] 1 2 3 4 Error [m/s]
0.5 0.496 0.576 0402 0.367 0.460
WN 0.664 0.713 0493 0451 0.580
5 0.703 0.663 0.635 0.544 0.636
0.5 0.521 0.657 0.776  0.669  0.655
He WE 0.624 0.685 0.905 0.698 0.728
5 0.611 0.710 0.854 0.608 0.696
0.5 0213 0.236 0347 0.385 0.295
wp 0.237 0.210 0.355 0.333 0.284
5 0.281 0.313 0321 0.290 0.301
0.5 0.665 1.089 0557 0.510 0.705
WN 0.796 1.201 0.610 0.614 0.805
5 0.874 1.236 0.690 0.685 0.871
0.5 0.666 0.854 0.825 0.899 0.811
K-B WE 0.798 0.937 0938 0.924 0.899
5 0.867 0.963 0992 0.945 0.942
0.5 0.191 0.225 0.254 0.382  0.263
wp 0318 0.320 0403 0492 0.383
5 0440 0423 0534 0.610 0.502
Flight Direction North  North ~ West West
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